DOI
是数位物件识别码
(
D
igital
O
bject
I
dentifier
)
的简称,
为物件在网路上的唯一识别码,可用于永久连结并引用目标物件。
使用DOI作为永久连结
每个DOI号前面加上
「
http://dx.doi.org/
」
便成为永久网址。
如以DOI号为
10.5297/ser.1201.002
的文献为例,此文献的永久连结便是:
http://dx.doi.org/
10.5297/ser.1201.002
。
日后不论出版单位如何更动此文献位置,永久连结所指向的位置皆会即时更新,不再错失重要的研究。
引用含有DOI的文献
有DOI的文献在引用时皆应同时引用DOI。若使用APA、Chicago以外未规范DOI的引用格式,可引用DOI永久连结。
DOI可强化引用精确性、增强学术圈连结,并给予使用者跨平台的良好使用经验,目前在全世界已有超过五千万个对象申请DOI。 如想对DOI的使用与概念有进一步了解,请参考 ( ) 。
On Solutions of Diffusive Lotka-Volterra Systems
洪立昌 , 博士 导师:陈俊全
英文 DOI: 10.6342/NTU.2011.00471
行进波解 ; 严密解 ; 洛特卡-佛尔特拉 ; Traveling wave solutions ; Exact solutions ; Lotka-Volterra
- [1] M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for
连结: - a special wave speed, Bull. Math. Biol., 41 (1979), pp. 835–840.
连结: - [2] G. A. Afrouzi, On a nonlinear eigenvalue problem in ODE, J. Math. Anal. Appl.,
连结: - 303 (2005), pp. 342–349.
连结: - [3] S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to
连结: