题名

生成式人工智慧在護理領域的革命—提升照護品質與教育的新篇章

并列篇名

The Generative Artificial Intelligence Revolution in Nursing: A New Chapter in Enhancing Care Quality and Education

DOI

10.6224/JN.202404_71(2).03

作者

余怡珍(I-Chen YU);郭景明(Jing-Ming GUO)

关键词

人工智慧 ; 護理 ; 生成式AI ; artificial intelligence (AI) ; nursing ; generative AI

期刊名称

護理雜誌

卷期/出版年月

71卷2期(2024 / 04 / 01)

页次

12 - 19

内容语文

繁體中文;英文

中文摘要

科技技術日新月異,使得人工智慧成為科技發展的一大突破,而近年來生成式AI(artificial intelligence)更引領著另一項風潮。生成式AI技術應用於醫護領域,除了在醫療診斷效率的提升開啟了嶄新的可能性,同時為護理人員提供更準確的病人監測與優化照護流程。護理與科技的跨學科合作是一項新契機,透過生成式AI和護理專業知識結合,從而創造更有價值的護理照護模式。生成式AI對護理專業的影響,既是挑戰也是機會,適當的因應策略,將可創造更先進、更人性化的護理新價值,這不僅提升護理整體效益,也使得護理領域與現代社會的科技發展接軌。本文從介紹AI的發展與生成式AI的技術,到如何應用與可能面臨的挑戰做一陳述,期望引發科技與護理跨學科合作的新思維與策略。

英文摘要

Artificial intelligence (AI) represents a recent major breakthrough in technology development and, in recent years, generative AI has emerged as another trendsetter. The application of generative AI technologies in the healthcare sector has not only opened new possibilities for improving the efficiency of medical diagnoses but also provided healthcare professionals with more-accurate patient monitoring capabilities and optimized care processes. Combining generative AI with nursing expertise holds out the potential of creating a more valuable model of nursing care. The impact of generative AI on the nursing profession poses both challenges and opportunities. By applying appropriate strategies, it is possible to create more advanced and humane nursing values that enhance overall nursing efficiencies and align the nursing field with modern technological advancements. In this article, the development of AI and generative AI is reviewed, and the potential for their application to nursing care is discussed, with the goal of stimulating innovative thinking and new strategies for interdisciplinary collaboration between technology and nursing.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. 黃筑榆、杜清敏、鄭夙芬(2021).護理教育省思-人工智慧時代護理專業之準備與因應.護理雜誌,68(6),25–31。[Huang, C.-Y., Duh, C.-M., & Cheng, S.-F. (2021). A reflection on nursing education: Assuring the readiness of the nursing profession for the age of artificial intelligence. The Journal of Nursing, 68(6), 25–31.] https://doi.org/10.6224/JN.202112_68(6).05
    連結:
  2. Akinrinmade, A. O., Adebile, T. M., Ezuma-Ebong, C., Bolaji, K., Ajufo, A., Adigun, A. O., Mohammad, M., Dike, J. C., & Okobi, O. E. (2023). Artificial intelligence in healthcare: Perception and reality. Cureus, 15(9), Article e45594. https://doi.org/10.7759/cureus.45594
    連結:
  3. Albers, M., Gobbens, R. J. J., Reitsma, M., Timmermans, O. A. A. M. J., & Nies, H. L. G. R. (2021). Learning and innovation network in nursing: A concept analysis. Nurse Education Today, 104, Article 104988. https://doi.org/10.1016/j.nedt.2021.104988
    連結:
  4. Ayers, J. W., Poliak, A., Dredze, M., Leas, E. C., Zhu, Z., Kelley, J. B., Faix, D. J., Goodman, A. M., Longhurst, C. A., Hogarth, M., & Smith, D. M. (2023). Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Internal Medicine, 183(6), 589–596. https://doi.org/10.1001/jamainternmed.2023.1838
    連結:
  5. Ayre, J., Mac, O., McCaffery, K., McKay, B. R., Liu, M., Shi, Y., Rezwan, A., & Dunn, A. G. (2023). New frontiers in health literacy: Using ChatGPT to simplify health information for people in the community. Journal of General Internal Medicine. Advance online publication. https://doi.org/10.1007/s11606-023-08469-w
    連結:
  6. Bramlage, L., & Cortese, A. (2022). Generalized attention-weighted reinforcement learning. Neural Networks, 145, 10-21. https://doi.org/10.1016/j.neunet.2021.09.023
    連結:
  7. Chan, K. S., & Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: Integrative review. JMIR Medical Informatics, 5(1), Article e13930. https://doi.org/10.2196/13930
    連結:
  8. Darby, A., Strum, M. W., Holmes, E., & Gatwood, J. (2016). A review of nutritional tracking mobile applications for diabetes patient use. Diabetes Technology & Therapeutics, 18(3), 200–212. https://doi.org/10.1089/dia.20 15.0299
    連結:
  9. Dave, T., Athaluri, S. A., & Singh, S. (2023). ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Frontiers in Artificial Intelligence, 6, Article 1169595. https://doi.org/10.3389/frai.2023.1169595
    連結:
  10. Dunn, A. G., Shih, I., Ayre, J., & Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385–388. https://doi.org/10.1080/17538068.2023.2277489
    連結:
  11. Elendu, C., Amaechi, D. C., Elendu, T. C., Jingwa, K. A., Okoye, O. K., John Okah, M., Ladele, J. A., Farah, A. H., & Alimi, H. A. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine, 102(50), Article e36671. https://doi.org/10.1097/MD.0000000000036671
    連結:
  12. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. arXiv. https://doi.org/10.48550/arXiv.1406.2661
    連結:
  13. Guo, M.-H., Liu, Z.-N., Mu, T.-J., & Hu, S.-M. (2023). Beyond self-attention: External attention using two linear layers for visual tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5436–5447. https://doi.org/10.1109/TPAMI.2022.3211006
    連結:
  14. Hall, E. C., Raskutti, G., & Willett, R. M. (2019). Learning high-dimensional generalized linear autoregressive models. IEEE Transactions on Information Theory, 65(4), 2401–2422. https://doi.org/10.1109/TIT.2018.2884673
    連結:
  15. Haluza, D., Naszay, M., Stockinger, A., & Jungwirth, D. (2017). Digital natives versus digital immigrants: Influence of online health information seeking on the doctor-patient relationship. Health Communication, 32(11), 1342–1349. https://doi.org/10.1080/10410236.2016.1220044
    連結:
  16. Han, J.-W., Park, J., & Lee, H. (2022). Analysis of the effect of an artificial intelligence chatbot educational program on non-face-to-face classes: A quasi-experimental study. BMC Medical Education, 22(1), Article 830. https://doi.org/10.1186/s12909-022-03898-3
    連結:
  17. Hueso, M., Álvarez, R., Marí, D., Ribas-Ripoll, V., Lekadir, K., & Vellido, A. (2023). Is generative artificial intelligence the next step toward a personalized hemodialysis? Revista de Investigación Clínica, 75(6), 309–317. https://doi.org/10.24875/RIC.23000162
    連結:
  18. Karabacak, M., Ozkara, B. B., Margetis, K., Wintermark, M., & Bisdas, S. (2023). The advent of generative language models in medical education. JMIR Medical Education, 9, Article e48163. https://doi.org/10.2196/48163
    連結:
  19. Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal Endoscopy, 92(4), 807–812. https://doi.org/10.1016/j.gie.2020.06.040
    連結:
  20. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv. https://doi.org/10.48550/arXiv.1312.6114
    連結:
  21. Lecler, A., Duron, L., & Soyer, P. (2023). Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagnostic and Interventional Imaging, 104(6), 269–274. https://doi.org/10.1016/j.diii.2023.02.003
    連結:
  22. Liu, S., Wright, A. P., Patterson, B. L., Wanderer, J. P., Turer, R. W., Nelson, S. D., McCoy, A. B., Sittig, D. F., & Wright, A. (2023). Using AI-generated suggestions from ChatGPT to optimize clinical decision support. Journal of the American Medical Informatics Association, 30(7), 1237–1245. https://doi.org/10.1093/jamia/ocad072
    連結:
  23. McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., & Scalese, R. J. (2010). A critical review of simulation-based medical education research: 2003–2009. Medical Education, 44(1), 50–63. https://doi.org/10.1111/j.1365-2923.2009.03547.x
    連結:
  24. Mesko, B. (2023). The ChatGPT (generative artificial intelligence) revolution has made artificial intelligence approachable for medical professionals. Journal of Medical Internet Research, 25, Article e48392. https://doi.org/10.2196/48392
    連結:
  25. Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716679679
    連結:
  26. Oermann, E. K., & Kondziolka, D. (2023). On chatbots and generative artificial intelligence. Neurosurgery, 92(4), 665–666. https://doi.org/10.1227/neu.0000000000002415
    連結:
  27. Quinn, T. P., Senadeera, M., Jacobs, S., Coghlan, S., & Le, V. (2021). Trust and medical AI: The challenges we face and the expertise needed to overcome them. Journal of the American Medical Informatics Association, 28(4), 890–894. https://doi.org/10.1093/jamia/ocaa268
    連結:
  28. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, 169(12), 866–872. https://doi.org/10.7326/M18-1990
    連結:
  29. Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Babiker, A., Schärli, N., Chowdhery, A., Mansfield, P., Demner-Fushman, D., ... Natarajan, V. (2023). Large language models encode clinical knowledge. Nature, 620(7972), 172–180. https://doi.org/10.1038/s41586-023-06291-2
    連結:
  30. Stamer, T., Steinhäuser, J., & Flägel, K. (2023). Artificial intelligence supporting the training of communication skills in the education of health care professions: Scoping review. Journal Medical Internet Research, 25, Article e43311. https://doi.org/10.2196/43311
    連結:
  31. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
    連結:
  32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. arXiv. https://doi.org/10.48550/arXiv.1706.03762
    連結:
  33. 廖玉美(2023,11月9日).護理攜手AI,營造友善職場.國家衛生研究院論壇。[Liao, Y.-M. (2023, November 9). Nursing joins hands with AI to create more friendly workplaces. NHRI Forum.] https://forum.nhri.edu.tw/r172/
  34. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information processing systems (pp. 1877–1901). Curran Associates. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
  35. Corbett, R., Jacobs, F., & Shackleton, M. (2011). The European parliament (8th ed.). John Harper.
  36. Liang, P. P., Wu, C., Morency, L.-P., & Salakhutdinov, R. (2021). Towards understanding and mitigating social biases in language models. Proceedings of Machine Learning Research, 139, 6565–6576. https://proceedings.mlr.press/v139/liang21a.html
  37. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pretraining. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf