题名

近年臺灣濁水溪流域地下水儲存量變化趨勢探討

并列篇名

Recent Changes in Groundwater Storage in Jhuoshuei River Basin, Taiwan

DOI

10.29417/JCSWC.201703_48(1).0004

作者

黃嘉琦(Chia-Chi Huang);林琨達(Kun-Ta Lin);葉信富(Hsin-Fu Yeh)

关键词

低流分析 ; 排水 ; 地下水儲存量 ; Low flow analysis ; discharge ; groundwater storage

期刊名称

中華水土保持學報

卷期/出版年月

48卷1期(2017 / 03 / 01)

页次

36 - 43

内容语文

繁體中文

中文摘要

在近年來受到氣候變遷的影響,造成臺灣乾濕季分明,濕季降雨強度增強但降雨時間縮短,而乾季雨量稀少,加上降雨時間與空間的分布不均以及坡陡流急無法有效攔蓄降水,因此臺灣成為雨量充沛但水資源缺乏的國家。臺灣的水資源主要來源包含地面水及地下水,其中地下水抽用量雖然僅佔可運用水量的五分之一,但因較不易受蒸發散及人為汙染影響,為相對穩定的水資源來源。本研究以濁水溪流域為研究案例,利用河川消退方法分析流域基流係數 (a) 與排水特徵時間 (K),另由水平衡概念考量無降雨時期以及忽略蒸發影響下,利用低流消退分析評估地下水長期儲存量變化趨勢。研究結果顯示,流域內排水特徵時間常數介於82~189 天,平均為118±51 天。而本研究探討地下水儲存量變化趨勢的結果顯示,濁水溪流域內除了彰雲橋測站受集集攔河堰攔截溪水以供民生及工業用水而呈現下降趨勢 (-0.566 mm/y) 外,其它各個子集水區皆顯示出上升的趨勢。本研究之探討結果可以提供未來水資源管理及調配之重要參考。

英文摘要

As a result of recent climate change, the dry and wet seasons in Taiwan have become clearly distinguishable. Although the duration of rainfall has decreased during the wet season, the intensity of the rainfall has increased during this period. The dry season has low rainfall. Because of the inconsistency in the duration and spatial distribution of rainfall and the difficulty in retaining water on steep slopes and where the velocity of the flow is great, Taiwan currently has plentiful rainfall but lacks water resources. Taiwan's main water resources include surface water and groundwater. Since groundwater is less affected by evapotranspiration and man-made pollution, it is more stable water resource than other sources, although it only contributes to 20% of all usable water in Taiwan. This study uses a river recession analysis for the Jhuoshuei River Basin to analyze the basin's baseflow coefficient (a) and the characteristic drainage time scale (K). A water-balance conceptual model is used in this study. This uses low flow recession to determine the changes in long-term groundwater storage during periods when there is no rainfall, without taking into account the effect of evaporation. The results show that the Zhoushui River Basin's typical drainage duration constant is between 82 and 189 days, with an average of 118 ± 51 days. The analysis of changes in groundwater storage shows that except for the Zhangyun Bridge Station, which exhibits a decrease of 0.566mm/y, all gauge stations in the Jhuoshuei River Basin show increased storage. The findings of this study will serve as a reference for the future management and allocation of water resources.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. Arumí, J.L.,Maureira, H.,Souvignet, M.,Pérez, C.,Rivera, D.,Oyarzún, R.(2016).Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-central Chile.Hydrological Sciences Journal,61(5),844-855.
  2. Beven, K.(2006).Searching for the Holy Grail of scientific hydrology: Qt =(S, R, Δt) A as closure.Hydrology Earth and System Sciences,10,609-618.
  3. Biswal, B.,Marani, M.(2010).Geomorphological origin of recession curves.Geophysical Research Letters,37,L24403.
  4. Black, P.E.(1997).Watershed functions.Journal of the American Water Resources Association,33(1),1-11.
  5. Bloomfield, J.P.,Allen, D.J.,Griffiths, K.J.(2009).Examining geological controls on baseflow index (BFI) using regression analysis: an illustration from the Thames Basin, UK.Journal of Hydrology,373,164-176.
  6. Bogaart, P.W.,van der Velde, Y.,Lyon, S.W.,Dekker, S.C.(2016).Stream flow recession patterns can help unravel the role of climate and humans in landscape co-evolution.Hydrology and Earth System Sciences,20,1413-1432.
  7. Boussinesq, J. (1877). “Essai sur la theorie des eaux courantes: du movement non permanent des eaux souterraines [Essay on the theory of running waters: from non-permanent movement of groundwater].” Académie des sciences, Institut de France, 23, 252-260.
  8. Brandes, D.,Hoffman, J.,Mangarillo, J.T.(2005).Baseflow recession rates, low flows, and hydrologic features of small watersheds in Pennsylvania, USA.Journal of American Water Resources Association,41(5),1177-1186.
  9. Brutsaert, W.(2005).Hydrology: an introduction.Cambridge University Press.
  10. Brutsaert, W.(2008).Long-term groundwater storage trends estimated from streamflow records: Climatic perspective.Water Resources Research,44,W02409.
  11. Brutsaert, W.(2010).Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century.Theoretical and Applied Climatology,100(1-2),93-103.
  12. Brutsaert, W.,Nieber, J.L.(1977).Regionalized drought flow hydrographs from a mature glaciated plateau.Water Resources Research,13,637-643.
  13. Brutsaert, W.,Sugita, M.(2008).Is Mongolia's groundwater increasing or decreasing? The case of the Kherlen River basin.Hydrological Sciences Journal,53(6),1221-1229.
  14. Burns, D.A.,Plummer, L.N.,McDonnell, J.J.,Busenberg, E.,Casile, G.C.,Kendall, C.,Hooper, R.P.,Freer, J.E.,Peters, N.E.,Beven, K.,Schlosser, P.(2003).The Geochemical Evolution of Riparian Ground Water in a Forested Piedmont Catchment.Ground water,41(7),913-925.
  15. Collins, M.E.,Doolittle, J.A.,Rourke, R.V.(1989).Mapping depths to bedrock on a glaciated landscape with ground-penetrating radar.Soil Science Society of America Journal,53(6),1806-1812.
  16. Gao, Z.,Zhang, L.,Cheng, L.,Zhang, X.,Cowan, T.,Cai, W.,Brutsaert, W.(2015).Groundwater storage trends in the Loess Plateau of China estimated from streamflow records.Journal of Hydrology,530,281-290.
  17. Green, T.R.,Taniguchi, M.,Kooi, H.,Gurdak, J.J.,Allen, D.M.,Hiscock, K.M.(2011).Beneath the surface of global change: impacts of climate change on groundwater.Journal of Hydrology,405,532-560.
  18. Hughes, J.D.,Petrone, K.C.,Silberstein, R.P.(2012).Drought, groundwater storage and stream flow decline in southwestern Australia.Geophysical Research Letters,39,L03408.
  19. Kingsford, R.,Brandis, K.,Young, B.,Fryar, S.(2002).National Parks & Wildlife ServiceNational Parks & Wildlife Service,NSW:National Parks & Wildlife Service.
  20. Kirchner, J.W.(2009).Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward.Water Resources Research,45,W02429.
  21. Lyon, S.W.,Destouni, G.,Giesler, R.,Humborg, C.,Morth, M.,Seibert, J.,Karlsson, J.,Troch P.A.(2009).Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis.Hydrology and Earth System Sciences,13,595-604.
  22. Lyon, S.W.,Koutsouris, A.J.,Scheibler, F.,Jarsjö, J.,Mbanguka, R.,Tumbo, M.,Robert, K.K.,Sharma, A.N.,van der Velde, Y.(2015).Interpreting characteristic drainage timescale variability across Kilombero valley, Tanzania.Hydrological Processes,29,1912-1924.
  23. McDonnell, J.J.(2009).Factors affecting the response of small watersheds to precipitation in humid areas.Progress in Physical Geography,33(2),288-293.
  24. Mendoza, G.F.,Steenhuis, T.S.,Walter, M.T.,Parlange, J.Y.(2003).Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis.Journal of Hydrology,279,57-69.
  25. Parlange, J.,Stagnitti, F.,Heilig, A.,Szilagyi, J.,Parlange, M.,Steenhuis, T.,Hogarth, W.,Barry, D.,Li, L.(2001).Sudden drawdown and drainage of a horizontal aquifer.Water Resources Research,37,2097-2101.
  26. Rodell, M.,Chen, J.,Kato, H.,Famiglietti, J.S.,Nigro, J.,Wilson, C.R.(2006).Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE.Hydrogeology Journal,15(1),159-166.
  27. Sanchez, R.,Brooks, E.,Elliot, W.,Gazel, E.,Boll, J.(2015).Baseflow recession analysis in the inland Pacific Northwest of the United States.Hydrogeology Journal,23,287-303.
  28. Sayama, T.,McDonnell, J.J.,Dhakal, A.,Sullivan, K.(2011).How much water can a watershed store?.Hydrological Processes,25(25),3899-3908.
  29. Sen, P.K.(1968).Estimates of the regression coefficient based on Kendall's tau.Journal of the American Statistical Association,63,1379-1389.
  30. Smakhtin, V.U.(2001).Low flow hydrology: a review.Journal of Hydrology,240,147-186.
  31. Strassberg, G.,Scanlon, B.R.,Chambers, D.(2009).Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the high plains aquifer, Central United States.Water Resources Research,45,W05410.
  32. Sugita, M.,Brutsaert, W.(2009).Recent Low-Flow and Groundwater Storage Changes in Upland Watersheds of the Kanto Region, Japan.Journal of Hydrologic Engineering,14,280-285.
  33. Tague, C.,Grant, G.E.,Farrell, M.,Choate, J.,Jefferson, A.(2008).Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades.Climatic Change,86,189-210.
  34. Tallaksen, L.M.(1995).A review of baseflow recession analysis.Journal of Hydrology,165,349-370.
  35. Troch, P.A.,Durcik, M.(2007).New data sets to estimate terrestrial water storage change.Earth and Space Science News,88(45),469-484.
  36. Troch, P.A.,Mancini, M.,Paniconi, C.,Wood, E.F.(1993).Evaluation of a distributed catchment scale water balance model.Water Resources Research,29,1805-1817.
  37. Wagener, T.,Sivapalan M.,Troch, P.,Woods, R.(2007).Catchment classification and hydrologic similarity.Geography Compass,1(4),901-931.
  38. Xiang, L.,Wang, H.,Steffen, H.,Wu, P.,Jia, L.,Jiang L.,Shen, Q.(2016).Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data.Earth and Planetary Science Letters,449,228-239.
  39. Zecharias, Y.B.,Brutsaert, W.(1988).Recession characteristics of groundwater outflow and base flow from mountainous watersheds.Water Resources Research,24,1651-1658.
  40. Zhang, L.,Brutsaert, W.,Crosbie, R.,Potter, N.(2014).Long-term groundwater storage trends In Australian catchments.Advances in Water Resources,74,156-165.
  41. Zhang, L.,Chen, Y.D.,Hickel, K.,Shao, Q.(2009).Analysis of low-flow characteristics for catchments in Dongjiang Basin, China.Hydrogeology Journal,17,631-640.
  42. 水利署(編)=Water Resources Agency(2016).水利統計年報.經濟部水利署=Water Resources Agency.
  43. 林文英, W.Y.,林俐玲, L.L.(2009)。河川流域長期雨量及流量對水資源變化之影響。水土保持學報,41(2),169-180。
被引用次数
  1. 葉信富,陳信宇(2021)。以Budyko曲線分解法與氣候彈性法探討濁水溪沖積扇逕流量改變原因之研究。中華水土保持學報,52(2),89-99。