题名

使用QPESUMS雨量資料建立崩塌災害預警模式

并列篇名

A Rainfall-based Warning Model for Predicting Landslides Using QPESUMS Rainfall Data

DOI

10.29417/JCSWC.201703_48(1).0005

作者

陳振宇(Chen-Yu Chen);劉維則(Wei-Ze Liou);許家祥(Chia-Hsiang Hsu)

关键词

崩塌 ; 土石流 ; 預警系統 ; QPESUMS ; 有效累積雨量 ; Landslide ; debris flow ; warning system ; QPESUMS ; effective accumulated rainfall

期刊名称

中華水土保持學報

卷期/出版年月

48卷1期(2017 / 03 / 01)

页次

44 - 55

内容语文

繁體中文

中文摘要

台灣自2005 年起採用RTI 模式設定各鄉鎮雨量警戒值,並建立土石流紅黃警戒發布機制,已有效降低民眾傷亡。惟RTI 模式之有效累積雨量係以逐日折減方式納入前七日之降雨,在某些特殊型態雨場常導致警戒誤報率偏高。為此,本研究提出以逐時折減之有效累積雨量修正公式,並建立以QPESUMS 網格為警戒發布單元之坡地災害預警模式;以2015 年蘇迪勒颱風重創之烏來山區為例,本模式可有效預測災害發生之時間及區域,並以視覺化方式呈現降雨致災熱區,有助於各級政府應變中心之災情預判與決策分析。

英文摘要

The Rainfall Triggering Index (RTI) model is adopted to set up the critical rainfall for each township since 2005 in Taiwan, and the debris-flow warning system based on the RTI model is successful in reducing casualties. However, the antecedent rainfall calculation using the deduction coefficient of "t" days in the RTI model leads to a false alert rate higher under some rainfall patterns (e.g., long-term duration and lower rainfall intensity). This study suggests a modified method to calculate the antecedent rainfall and effective accumulated rainfall to solve the abovementioned problems. We also establish a new warning model, which uses the QPESUM data for the past decade, the identified results of remote-sensing image, and the disaster records, to predict landslides. In the case study of the Wulai District during Typhon Soudelor in 2015, the new warning model offers good prediction of the times and locations of landslides. This study also proposes a new platform which displays the rainfall-induced disaster hot zones. These findings can help government officials to make appropriate decisions during emergency response.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. 水土保持局土石流防災資訊網 (2016),http://246.swcb.gov.tw (Debris Flow Disaster Information Website, http://246.swcb.gov.tw (in Chinese))
  2. Aleotti, P.(2004).A warning system for rainfall-induced shallow failures.Eng Geo,73(3-4),247-265.
  3. Baum, Rex L.,Godt, Jonathan W.(2010).Early warning of rainfall-induced shallow landslides and debris flows in the USA.Landslides,7(3),259-272.
  4. Caine, N.(1980).The Rainfall intensity-duration control of shallow landslides and debris flows.Geografiska Annaler,62A,23-27.
  5. Chen, C.Y.,Fujita, M.(2014).A method for predicting landslides on a basin scale using water content indicator.Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering),70(4),I_13-I_18.
  6. Keefer, David K.,Wilson, Raymond C.,Mark, Robert K.,Brabb, Earl E.,Brown, William M., III,Ellen, Stephen D.,Harp, Edwin L.,Wieczorek, Gerald F.,Alger, Christopher S.,Zatkin, Robert S.(1987).Real-time landslide warning during heavy rainfall.Science,238(4829),921-925.
  7. Osanai, N.,Shimizu, T.,Kuramoto, K.,Kojima, S.,Noro, T.(2010).Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network.Landslides,7(3),325-338.
  8. Saito, H.,Matsuyama, H.(2012).Catastrophic landslide disasters triggered by record-breaking rainfall in Japan: Their accurate detection with Normalized Soil Water Index in the Kii Peninsula for the year 2011.SOLA,8,81-84.
  9. Thiebes, B.(2012).Landslide Analysis and Early Warning Systems: Local and Regional Case Study in the Swabian Alb, Germany.Springer Berlin Heidelberg.
  10. UNISDR (2009): Terminology on Disaster Risk Reduction. UN/ISDR. (http://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf).
  11. Wieczorek, G.F.,Glade, T.(2005).Climatic factors influencing occurrence of debris flows.Debris-flow Hazards and Related Phenomena, Praxis
  12. 日本氣象庁 (2016),土砂災害警戒判定メッシュ情報。(Japan Meteorological Agency (2016). Sediment disaster warning judgment mesh information. (in Japanese)) (http://www.jma.go.jp/jp/doshamesh)
  13. 日本内閣府(2015)。日本内閣府 (2015),「総合的な土砂災害対策の推進について」。(Cabinet Office, Government of Japan (2015). Promotion of comprehensive sediment-related disaster countermeasures. (in Japanese))。
  14. 水土保持局=Soil and Water Conservation Bureau=SWCB(2016)。,未出版
  15. 李鎮洋, C.Y.,賴文基, W.C.,陳振宇, C.Y.,黃效禹, H.Y.,郭力行, L.H.(2011)。莫拉克颱風複合型災害發生歷程的時空重建—以小林村深層崩塌為例。Journal of Chinese Soil and Water Conservation,42(4),313-324。
  16. 周仲島, J.D.,鍾吉俊, C.J.,修榮光, R.G.(2015)。S 波段雙偏極化雷達在梅雨季豪大雨天氣系統定量降雨估計之應用。大氣科學,43(2),91-113。
  17. 張保亮, P.L.(2011).QPESUMS 產品應用介紹.中央氣象局氣象衛星中心=Central Weather Bureau=CWB.
  18. 陳振宇, C.Y.(2013)。以雨量為基礎之土砂災害警戒系統成效評估—以台灣及日本為例。中華水土保持學報,44(1),50-64。
  19. 陳振宇, C.Y.(2008)。國內土石流警戒發布機制沿革。台灣水土保持季刊,63,1-7。
  20. 詹錢登, C.D.,李明熹, M.H.(2004)。土石流發生降雨警戒模式。中華水土保持學報,35(3),275-285。
  21. 詹錢登, C.D.,李明熹, M.H.,黃婷卉, T. H.(2003)。土石流發生降雨警戒值模式之研究。九十一年度防救災專案計畫成果研討會
  22. 国土交通省河川局砂防部、氣象庁予報部、国土交通省国土技術政策総合研究所(2005)。国土交通省河川局砂防部、氣象庁予報部、国土交通省国土技術政策総合研究所 (2005),「国土交通省河川局砂防部と氣象庁予報部の連携による土砂災害警戒避難基準雨量の設定手法(案)」。(Department of Erosion and Sediment Control (DESC), Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Japan Meteorological Agency (JMA) and National Institute for Land and Infrastructure Management (NILIM) (2005). Manual for the method of setting mass-movement disasters warning criterion based on rainfall indices (Draft). (in Japanese))。
  23. 国土交通省国土技術政策総合研究所(2001)。土砂災害警戒避難基準雨量の設定手法。国土技術政策総合研究所資料,5
被引用次数
  1. 陳國威,陳振宇,陳均維,林詠喬(2019)。坡地降雨致災熱區警戒模式。中華水土保持學報,50(1),1-10。
  2. 黃郅軒,郭本垣,許家銘,邱奕旭,林慶仁,周憲德(2023)。礫石型土石流之觸發降雨特性與監測訊號判釋。中華水土保持學報,54(1),16-26。
  3. 蕭維震,梁偉立(2021)。應用攜帶式鑽探設備觀測天然林沖蝕溝的地表逕流及淺層地下水特性。中華水土保持學報,52(3),121-134。
  4. 詹婉妤,陳振宇,陳均維,莊承穎,林詠喬(2023)。臺灣近年(2006-2020)降雨誘發之土砂災害變遷趨勢分析。中華水土保持學報,54(2),108-118。