题名

應用二維水理輸砂模式評估野溪清疏成效之研究

并列篇名

Using a 2D Hydrodynamic Model to Assess the Dredging Efficiency in an Upstream Creek

DOI

10.29417/JCSWC.201709_48(3).0002

作者

詹勳全(Hsun-Chuan Chan);邱亮鈞(Liang-Jyun Ciou);彭振捷(Chen-Chieh Peng);張承遠(Chern-Yuan Chang);郭炳榮(Ping-Jung Kuo)

关键词

水理輸砂模式 ; 清疏 ; 成效 ; 碼崙溪 ; Hydrodynamic model ; dredge ; efficiency ; Malun stream

期刊名称

中華水土保持學報

卷期/出版年月

48卷3期(2017 / 09 / 01)

页次

113 - 126

内容语文

繁體中文

中文摘要

本研究藉由CCHE-2D 水理模式評估野溪河道清疏方案之成效,選定宜蘭縣碼崙溪為研究區域,擬定未清疏 (零方案)、河道清疏為複式斷面及蘭陽溪匯流口附近河道疏濬等方案,搭配不同疏濬深度,共6 組方案進行模擬分析,以洪水事件後底床回淤情況評估不同方案之成效。模式之檢定項目選定輸砂公式及調適長度,結果顯示當輸砂公式採用Modified Engelund and Hansen 輸砂公式,並搭載調適長度為1,000 公尺進行模擬時,於碼崙溪下游靠近蘭陽溪匯流口附近之河段有良好的模擬成效。採用完成檢定後之水理模式,評估不同清疏方案經過芭瑪颱風後之底床高程變化,針對保全對象碼崙橋橫斷面之模擬結果進行探討,研究發現零方案洪水後之平均回淤高度為1.5 公尺;主流清疏方案因主斷面處通水斷面積增加,形成囚砂區,平均回淤高度上升為1.7 公尺;蘭陽溪匯流口附近河道疏濬後,使溪水流速增快、泥砂輸送能力提高,平均回淤高度隨疏濬深度增加而降低,當疏濬深度介於1.5~2.0 公尺時,對應之平均回淤高度小於1.0 公尺。模擬結果分析顯示,碼崙溪河道清疏為複式斷面後,初期雖可提供碼崙橋下足夠之通洪斷面,但後續遭遇洪水會有快速回淤之現象;藉由匯流口底床疏濬後,可提高碼崙橋附近之水流流速,進而增加洪水自身挾砂能力,持續有效維持通洪斷面。

英文摘要

This paper aims to evaluate the efficiency of dredging scenarios in Malun Stream by using a CCHE- 2D hydrodynamic model. The dredging scenarios were: do-nothing, dredge at the main stream with a compound cross-section, and dredge at the confluence of the Malun Stream and Lanyang River. Considering the different depths of dredge at the confluence, there were six dredging scenarios investigated in the present study. Through the simulation of the bed changes in a flood event, the aggregation of the dredging areas was used to evaluate the efficiency of dredging scenarios. The verification of the CCHE-2D model showed the Modified Engelund & Hansen formula with the adaptation length equal to 1000 meters successfully represented the bed changes in the study areas. The simulation results showed the average height of aggregation was about 1.5 meters near the Malun Bridge in the do-nothing scenario. The corresponding value of the dredge at the main stream increased to 1.7 meters, because the sediment was trapped in the dredging areas. Near the Malun Bridge, this resulted in a decrease of the area of the cross-section and a corresponding decrease of ability to pass flood level. However, the dredge at the confluence showed an increase of flow velocity and ability of sediment transport. Moreover, the height of aggregation decreased with the increase of dredging depth. With the dredging depth ranging from 1.5~2.0 meters, the height of aggregation was less than 1.0 meters. The dredging at the confluence of the Malun Stream and Lanyang River was found to be the most effective dredging scenarios among the one studied here.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. Engelund, F.,Hansen, E.(1967).A monogragh on sediment transport in alluvial streams.Copenhagen, Denmark:Teknisk Vorlag.
  2. Garbrecht, J.,Kuhnle, R.,Alonso, C.(1995).A sediment transport capacity formulation for application to large channel networks.Journal of Soil and Water Conservation,50(5),527-529.
  3. Langendoen, E.J.(2001).,Oxford M.S.:USDA-ARS National Sedimentation Laboratory.
  4. Moussa, A.M.A.(2013).Predicting the deposition in the Aswan High Dam Reservoir using a 2-D model.Ain Shams Engineering Journal,4(2),143-153.
  5. Nassar, M.A.(2011).Multi-parametric sensitivity analysis of CCHE2D for channel flow simulations in Nile River.Journal of Hydro-environment Research,5(3),187-195.
  6. Proffit, G.T.,Sutherland, A.J.(1983).Transport of nonuniform sediment.Journal of Hydraulic Research, IAHR,21(1),33-43.
  7. Wu, W.(2001).Technical Rep. of National Center for Computational Hydroscience and EngineeringTechnical Rep. of National Center for Computational Hydroscience and Engineering,USA:Univ. of Mississippi.
  8. Wu, W.,Vieira, D.A.(2002).Technical Rep. of National Center for Computational Hydroscience and EngineeringTechnical Rep. of National Center for Computational Hydroscience and Engineering,USA:Univ. of Mississippi.
  9. Wu, W.,Wang, S.S.Y.,Jia, Y.(2000).Nonuniform sediment transport in alluvial rivers.Journal of Hydraulic Research,38(6),427-434.
  10. 行政院農委會水土保持局 (2014),「水土保持技術規範」。(Technical Regulations for Soil and Water Conservation (2014). Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan. (in Chinese))
  11. 行政院農委會水土保持局臺北分局, Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan(2014)。,未出版
  12. 陳智誠, C.C.(2015)。Taiwan, ROC,國立臺北科技大學土木工程系=National Taipei University of Technology。
  13. 經濟部水利署水利規劃試驗所, Water Resources Agency, Ministry of Economic Affairs(2008)。,未出版
  14. 詹子瑩, Z.Y.(2015)。Taiwan, ROC,逢甲大學水利工程與資源保育學系=Feng Chia University。
  15. 趙益群, Y.C.,李欣輯, H.C.,劉俊志, J.J.,陳永明, Y.M.(2015)。以動力降尺度資料應用於高屏溪本流之水理模擬。臺灣水利,63(3),75-84。
  16. 盧錫彥, S.Y.(2012)。Taiwan, ROC,國立中興大學水土保持學系=National Chung Hsing University。
  17. 闕帝旺, D.W.(2013)。Taiwan, ROC,逢甲大學水利工程與資源保育學系=Feng Chia University。
被引用次数
  1. (2024)。以SRH-2D模式評估高灘地鬆土後之輸砂行為。台灣水利,72(1),1-16。