题名

天空開闊度與局部立體模型於山崩判釋及地形變異評估:以台東縣紅葉村為例

并列篇名

Landslide Mapping and Geomorphologic Change Based on a Sky-View Factor and Local Relief Model: A Case Study in Hongye Village, Taitung

DOI

10.29417/JCSWC.201803_49(1).0003

作者

李璟芳(Ching-Fang Lee);曹鼎志(Ting-Chi Tsao);黃韋凱(Wei-Kai Huang);林聖琪(Sheng-Chi Lin);尹孝元(Hsiao-Yuan Yin)

关键词

山崩 ; 地形計測學 ; 天空開闊度 ; 局部立體模型 ; 無人機 ; landslide ; geomorphometric analysis ; SVF relief map ; local relief model ; UAV

期刊名称

中華水土保持學報

卷期/出版年月

49卷1期(2018 / 03 / 01)

页次

27 - 39

内容语文

繁體中文

中文摘要

本研究結合山崩災前高精度數值地型與災後無人機攝影測量技術產製之地表數值模型,以地形計測學常用之立體陰影圖,探討集水區內山崩判釋可行性及災後快速地貌變遷評估。本文以2016年9月15日莫蘭蒂颱風誘發臺東縣延平鄉紅葉村山崩為例,萃取災前DEM山崩微地形判釋及DSM樹冠開闊度特徵,以建立潛在山崩發生區判釋評估分析流程。另應用災後無人機拍攝影像之三維建模,配合災後地貌可研析山崩土砂運移歷程及土石流影響範圍。地形變異分析顯示紅葉村崩塌區面積約4.5公頃,平均崩滑深度5.1公尺, 總崩塌量體約22.8萬立方公尺,山崩運移距離約為957公尺,轉化為土石流之總流動距離達1.23公里。由現場調查與災後三維地形之驗證,崩塌邊界及林冠陷落特徵可於災前分別透過天空開闊度立體圖及局部立體模型圖予以判釋。本研究最後提出適於潛在土砂災害識別之地形計測學指標與災害潛勢評估建議。

英文摘要

This study integrates pre-landslide high-resolution digital elevation model (DEM), digital surface model (DSM) produced using post-landslide drone photography, and geomorphometric analysis to explore the effectiveness of landslide interpretation and fast assessment of geomorphic change. In this study, the large-scale landslide that occurred in Hongye Village, Taitung County in Eastern Taiwan, on September 15, 2016, was investigated. We combined both the microtopography features from the DEM and canopy openness in the DSM to establish an assessment procedure for landslide hotspot extraction. Drone photography and three-dimensional modeling techniques were used to measure the sediment transportation process and conduct postdisaster influence area mapping. The results showed that the landslide area, mean sliding depth, and volume of the landslide in Hongye Village were approximately 4.5 ha, 5.1 m, and 22.8.104 m3, respectively. The runout distance of the initial landslide was 960 m and increased to 1.23 km when the landslide transformed into debris flow in the village. Field validation indicated that the landslide-prone area and subsidence features on the forest canopy could be recognized using a sky-view factor relief and local relief model. Moreover, a complete landslide susceptibility assessment approach suitable for the catchment scale is presented.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. Adushkin, V.V.(2006).Mobility of rock avalanches triggered by underground nuclear explosions.Landslides from Massive Rock Slope Failure,The Netherlands:
  2. Chen, R.F.,Lin, C.W.,Chen, Y.H.,He, T.C.,Fei, L.Y.(2015).Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM.Remote Sens,7,15443-15466.
  3. Chiba, T.,Kaneta, S.,Suzuki, Y.(2008).Red relief image map: new visualization method for three dimensional data.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,37(B2)
  4. Chigira, M.(2012)。Characterization, prediction, and management of deep-seated catastrophic landslides。Disaster Prevention Research Institute, Kyoto University。
  5. Doneus, M.(2013).Openness as visualization technique for interpretative mapping of airborne Lidar derived digital terrain models.Remote Sens,5,6427-6442.
  6. Dozier, J.,Bruno, J.,Downey, P.(1981).A faster solution to the horizon problem.Computers & Geosciences,7(2),145-151.
  7. Hesse, R.(2010).LiDAR-derived Local Relief Models (LRM) – a new tool for archaeological prospection.Archaeological Prospection,17,67-72.
  8. Kokalj, Z.,Hesse, R.(2017).Airborne laser scanning raster data visualization: A Guide to Good Practice.Založba ZRC.
  9. Lee, C.F.,Huang, C.M.,Tsao, T.C.,Wei, L.W.,Huang, W.K.,Cheng, C.T.,Chi, C.C.(2016).Combining rainfall parameter and landslide susceptibility to forecast shallow landslide in Taiwan.Geotechnical Engineering Journal of the SEAGS & AGSSEA,47(2),72-82.
  10. Lee, C.F.,Lo, C.M.,Chou, H.T.,Chi, S.Y.(2016).Landscape evolution analysis of deep-seated landslides at Donao Peak, Taiwan.Environmental Earth Sciences,75(1),29.
  11. Mellor, A.,Haywood, A.,Stone, C.,Jones, S.(2013).The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification.Remote Sensing,5,2838-2856.
  12. Saez, J.L.,Corona, C.,Stoffel, M.,Berger, F.(2014).Assessment of forested shallow landslide movements coupling tree ring records from stems and exposed roots.Géomorphologie: relief, processus, environnement,20,159-174.
  13. Scheidegger, A.E.(1973).On the Prediction of the Reach and Velocity of Catastrophic Landslides.Rock Mechanics,5(4),231-236.
  14. Šilhán, K.(2015).Can tree tilting indicate mechanisms of slope movement ?.Engineering Geology,199,157-164.
  15. Yokoyama, R.,Shirasawa, M.,Pike, R.J.(2002).Visualizing topography by Openness: A new application of image processing to digital elevation models.Photogrammetric Engineering and Remote Sensing,68,257-265.
  16. Zakšek, K.,Oštir, K.,Kokalj, Ž.(2011).Sky‐View factoras a relief visualization technique.Remote Sens,3,398-415.
  17. 上野将司(2012)。危ない地形・地質の見極め方。日経コンストラクション=Nikkei Business Publications, Inc.。
  18. 今村遼平(2012)。地形工學入門─地形の見方‧考え方。鹿島出版會=Kajima Publishing Co.。
  19. 北海道立総合研究機構地質研究所(2013)。北海道立総合研究機構地質研究所 (2013),地すべり活動度評価手法マニュアル(案),北海道立総合研究機構地質研究所,8-18。(Geological Survey of Hokkaido (2013), Landslide activity evaluation method manual. Ministry of Agriculture, Forestry and Fisheries. Geological Survey of Hokkaido, 8-18. (in Japanese))。
  20. 林偉雄, W.H.,林啟文, C.W.,劉彥求, Y.C.,陳柏村, P.T.(2008).五萬分之一臺灣地質圖及說明書─台東、知本.經濟部中央地質調查所=Central Geological Survey.
  21. 林野庁(2014)。林野庁 (2014),大規模崩壊潜在斜面危険度判定マニュアル,林野庁,4-25。(Forestry and Fisheries, Ministry of Agriculture (2014), Large-scale landslide and slope risk assessment. Ministry of Agriculture, Forestry and Fisheries. 4-25. (in Japanese))。
  22. 財團法人中興工程顧問社, INC(2016)。經濟部中央地質調查所報告經濟部中央地質調查所報告,經濟部中央地質調查所=Central Geological Survey。
  23. 謝有忠, Y.C.,侯進雄, C.S.,胡植慶, J.C.,費立沅, L.Y.,陳宏仁, H.J.,邱禎龍, C.L.,詹瑜璋, Y.C.(2016)。地形計測方法應用於潛在大規模崩塌之判釋。航測及遙測學刊,20(4),263-277。