题名

應用簡易動力貫入法判釋地層結構

并列篇名

Applying a Portable Dynamic Cone Penetration Test to Detect Shallow Geological Structures

DOI

10.29417/JCSWC.201903_50(1).0003

作者

鄭名宏(Ming-Hung Cheng);梁偉立(Wei-Li Liang)

关键词

不連續層 ; 儀器設備開發 ; 土壤厚度 ; 土壤岩層交界面 ; Discontinuous layer ; equipment development ; soil depth ; soil-bedrock interface

期刊名称

中華水土保持學報

卷期/出版年月

50卷1期(2019 / 03 / 01)

页次

22 - 31

内容语文

繁體中文

中文摘要

土壤厚度及土壤岩層交界面位置為土地利用分級或邊坡穩定分析的重要指標,為獲取土壤厚度等資訊,簡易貫入法為坡地環境中常用的方法,能以重錘打擊次數來描述貫入阻抗N_h的分布。本研究改良「簡易貫入法(PCPT)」為「簡易動力貫入法(PDCPT)」,將重錘改以撞擊馬達,以貫入時間來描述貫入阻抗N_(pd)。利用不同硬度堆疊之試驗槽,發現兩貫入法均可描述阻抗分布特性,其線性對應關係為N_(pd) = 0.0197×N_h。透過野外試驗發現,在地層分明的環境,兩貫入法均能探測阻抗分布及土壤岩層交界位置。但在地層結構複雜之環境,唯有動力貫入能取得風化岩層內結構資訊,並判斷岩層中垂直或水平方向的不連續層面。因此本研究所研發之簡易動力貫入法除了保有可攜帶之特性,並可大幅減少調查時間,甚至取得風化岩層內較深層的地質結構資訊,能更有效率應用於坡地環境中。

英文摘要

Soil depth and soil-bedrock interface location are critical indices for land use classification and slope stability analysis. To evaluate soil depth in hillslope environments, the portable cone penetration test (PCPT) is an extensively applied method for calculating penetration resistance (N_h) based on the number of knocks required for penetration. In this study, we developed a portable dynamic cone penetration test (PDCPT) based on a conventional PCPT design. The PDCPT features a knocking engine instead of the knocking weight of the PCPT. The penetration resistance (N_(pd)) detected by the PDCPT is expressed based on the time of knocks required for penetration. We used an experimental device containing layers with varying levels of hardness to evaluate the PDCPT and PCPT and discovered a strong correlation between the vertical distributions of penetration resistance measured using both tests. The relationship of these two values for penetration resistance can be expressed through the following linear regression: N_(pd) = 0.0197 × N_h. The results of field tests indicated that both the PDCPT and PCPT successfully detected the spatial distribution of penetration resistance and depths of the soil-bedrock interface in a simple environment with an obvious distinction between soil and bedrock layers. By contrast, in a complex environment with heterogeneously geological structures, only the PDCPT was able to analyze deeper structures and detect vertically or horizontally discontinuous layers within weathered bedrock layers. The findings of this study demonstrated that compared with the PCPT, the PDCPT with portability greatly reduced the survey duration and was able to detect deeper geological structures within weathered bedrock layers. Thus, the PDCPT is a more efficient method for use in hillslope environments.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. (2011).Forest Hydrology and Biogeochemistry.Dordrecht:Springer.
  2. Chigira, M.,Duan, F.,Yagi, H.,Furuya, T.(2004).Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics.Landslides,1(3),203-209.
  3. Demoulin, A.,Glade, T.(2004).Recent landslide activity in Manaihan, East Belgium.Landslides,1(4),305-310.
  4. Dietrich, W.E.,Reiss, R.,Hsu, M.L.,Montgomery, D.R.(1995).A process­based model for colluvial soil depth and shallow landsliding using digital elevation data.Hydrological processes,9(3-4),383-400.
  5. Freer, J.,McDonnell, J.J.,Beven, K.J.,Peters, N.E.,Burns, D.A.,Hooper, R.P.,Aulenbach, B.,Kendall, C.(2002).The role of bedrock topography on subsurface storm flow.Water Resources Research,38(12),1269.
  6. Fukuoka, H.,Wang, G.,Sassa, K.,Wang, F.,Matsumoto, T.(2004).Earthquake-induced rapid long-traveling flow phenomenon: May 2003 Tsukidate landslide in Japan.Landslides,1(2),151-155.
  7. Katsura, S.Y.,Kosugi, K.I.,Mizutani, T.,Mizuyama, T.(2009).Hydraulic properties of variously weathered granitic bedrock in headwater catchments.Vadose Zone Journal,8(3),557-573.
  8. Kim, M.S.,Onda, Y.,Kim, J.K.,Kim, S.W.(2015).Effect of topography and soil parameterisation representing soil thicknesses on shallow landslide modelling.Quaternary International,384,91-106.
  9. Liang, W.L.,Chan, M.C.(2017).Spatial and temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment.Journal of Hydrology,546,405-418.
  10. Masaoka, N.,Kosugi, K.,Yamakawa, Y.,Mizuyama, T.,Tsutsumi, D.(2012).Application of a combined penetrometer-moisture probe for investigating heterogeneous hydrological properties of a footslope area.Vadose Zone Journal,11(2)
  11. Montgomery, D.R.,Dietrich, W.E.(2002).Runoff generation in a steep, soil­mantled landscape.Water Resources Research,38(9),1168.
  12. Okada, Y.,Ochiai, H.,Okamoto, T.,Sassa, K.,Fukuoka, H.,Igwe, O.(2007).A complex earth slide-earth flow induction by the heavy rainfall in July 2006, Okaya City, Nagano Prefecture, Japan.Landslides,4(2),197-203.
  13. Scherrer, S.,Naef, F.(2003).A decision scheme to indicate dominant hydrological flow processes on temperate grassland.Hydrological Processes,17(2),391-401.
  14. Uchida, T.、Mori, N.、Tamura, K.、Terada, H.、Takiguchi, S.、Kamee, K.(2009)。The role of data preparation on shallow landslide prediction。Journal of the Japan Society of Erosion Control Engineering,62(1),23-31。
  15. Wang, F.W.,Matsumoto, T.,Tanaka, Y.(2005).Two recent flowslides in Yamashina area, Kanazawa city, Japan.Landslides,2(3),229-234.
  16. Wiegand, C.,Kringer, K.,Geitner, C.,Rutzinger, M.(2013).Regolith structure analysis-a contribution to understanding the local occurrence of shallow landslides (Austrian Tyrol).Geomorphology,183,5-13.
  17. Yamakawa, Y.,Kosugi, K.,Masaoka, N.,Sumida, J.,Tani, M.,Mizuyama, T.(2012).Combined geophysical methods for detecting soil thickness distribution on a weathered granitic hillslope.Geomorphology,145-146,56-69.
  18. Zieher, T.,Schneider-Muntau, B.,Mergili, M.(2017).Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria).Landslides,14(6),2009-2023.
  19. 呂宗烜, T.H.,梁偉立, W.L.(2014)。應用簡易貫入試驗及大地比電阻法推估崩積地土壤岩層界面。中華水土保持學報,45(4),234-242。
  20. 邱琳濱, L.B.(2010)。Taiwan, ROC,國立臺灣大學土木工程學研究所=National Taiwan University。
  21. 姜壽浩, S.H.(2010)。Taiwan, ROC,國立臺灣大學地理環境資源學研究所=National Taiwan University。
  22. 姜壽浩, S.H.,徐美玲, M.L.(2006)。以局部穩定條件率定之土壤厚度估測模式。國立臺灣大學地理學系地理學報,44,23-38。
  23. 張庭瑜, T.Y.,王湘閔, S.M.,林昭遠, C.Y.(2015)。陳有蘭溪集水區災後山坡地土地可利用限度查定快速評估之研究。中華水土保持學報,46(3),158-170。
  24. 郭佳韋, C.W.(2013)。Taiwan, ROC,國立中央大學應用地質研究所=National Central University。
  25. 陳建新, C.H.,陳嬑璇, Y.H.,譚志豪, C.H.,冀樹勇, S.Y.,蘇泰維, T.W.(2013)。台灣西部地區降雨促崩潛勢特性分析。中華水土保持學報,44(2),179-189。
  26. 陳彥儒, Y.R.(2009)。Taiwan, ROC,國立成功大學土木工程研究所=National Cheng Kung University。
  27. 詹孟浚, M.C.,梁偉立, W.L.(2014)。以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位。中華水土保持學報,45(2),85-94。
被引用次数
  1. 蕭維震,梁偉立(2021)。應用攜帶式鑽探設備觀測天然林沖蝕溝的地表逕流及淺層地下水特性。中華水土保持學報,52(3),121-134。