题名

結合鑽探與地球物理方法調查八寶寮崩塌地之水文地質特性

并列篇名

Combining Drilling and a Geophysical Approach to Investigating the Hydrogeological Characteristics of the Babaoliao Landslide Area

DOI

10.29417/JCSWC.201906_50(2).0004

作者

張國欽(Kuo-Chin Chang);葉信富(Hsin-Fu Yeh);林榮潤(Jung-Jun Lin);陳耐錦(Nai-Chin Chen);柯建仲(Chien-Chung Ke);陳榮俊(Jung-Chun Chen)

关键词

鑽探 ; 地球物理法 ; 侵入式與非侵入式探勘 ; Drilling ; geophysical approach ; invasive and noninvasive methods

期刊名称

中華水土保持學報

卷期/出版年月

50卷2期(2019 / 06 / 01)

页次

73 - 88

内容语文

繁體中文

中文摘要

臺灣常在夏秋兩季遭受颱風豪雨之侵襲,山區因此常無預警的發生大規模的崩坍、滑動或土石流等自然災害。本研究以侵入式探勘及非侵入式探勘兩種地球物理方法合併使用,藉此可於投入長期監測系統前初步掌握崩塌地水文地質特性及潛在崩塌面,以提高邊坡防災之效能。本研究挑選位於臺灣嘉義縣之八寶寮崩塌地為研究場址,首先透過地質鑽探與岩心判釋,可瞭解研究區域地層特性為淺層1~2公尺為土壤與風化岩層,與地電阻影像剖面(RIP)測線判釋結果相似,且三處鑽孔(BH-01、BH-02及BH-03)皆顯示地表下深度約18.3至26.5公尺處,有厚度2~3公尺的剪裂泥分布。由BH-02及BH-03孔內岩體裂隙調查結果,可瞭解此處地層層面屬於高角度位態發育。另外,孔內地球物理探查顯示,此區域之淺層及深層地層材料為含泥量較多且膠結較差之泥質砂岩,因此易形成潛在之滑動面。而孔內地下水流速與流向調查方面則指出,BH-03鑽孔處之地層深處裂隙因與高水頭地層連通,於豪雨期間易造成地層孔隙水壓抬升而降低坡地之穩定性,且位於4公尺岩土交界面所形成之水流路徑則有可能形成潛在之滑動面。

英文摘要

Heavy rainfall regularly occurs in Taiwan during the typhoon season in the summer and fall, and this rainfall causes large-scale natural disasters such as landslides, rockslides, and mudflows. Using a geophysical survey with both invasive and noninvasive methods, this study was conducted to preliminarily understand the hydrogeological characteristics of a landslide area and locate potential failure surfaces to strengthen slope failure prevention. The landslide area of Babaoliao region in Chiayi County of Taiwan was selected as the research site. Core drilling and analysis were conducted at the site; the results revealed that the 1-2-m-thick upper layer is composed of soil and weathered rock, which is similar to the conclusion reached through resistivity image profiling. Analysis of three boreholes (BH-01-3) determined a 2-3-m-thick layer of shear gouge in the subsurface layer between 18.3 and 26.5 m below ground. Investigation of the fractured rock masses in BH-02 and BH-03 revealed that the region has a large dip angle. Furthermore, geophysical survey of the boreholes demonstrated that both the outer and inner geological layers of the region are composed of silt-bearing marlstone that is not prone to cementation, causing a potential rupture surface. Inspection of BH-03 in terms of groundwater velocity and direction revealed a potential decrease in slope stability under heavy rain due to the rise in pore water pressure caused by the high hydraulic head connected to the borehole through fractures. The flow path formed by the soil-rock interface at 4 m below ground is a potential rupture surface.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. Al-Saigh, N.,Al-Dabbagh, T.H.(2010).Identification of landslide slip-surface and its shear strength: A new application for shallow seismic refraction method.Journal of the Geological Society of India,76(2),175-180.
  2. Asriza, S.,Kristyanto, T.,Indra, T.,Syahputra, R.,Tempessy, A.(2017).Determination of the landslide slip surface using electrical resistivity tomography (ERT) technique.Advancing Culture of Living with Landslides: Volume 2 Advances in Landslide Science
  3. Bogena, H.R.,Huisman, J.A.,Güntner, A.,Hübner, C.,Kusche, J.,Jonard, F.,Vey, S.,Vereecken, H.(2015).Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: A review.Wiley Interdisciplinary Reviews: Water,2(6),635-647.
  4. Chen, C.W.,Oguchi, T.,Hayakawa, Y.S.,Saito, H.,Chen, H.(2017).Relationship between landslide size and rainfall conditions in Taiwan.Landslides,14(3),1235-1240.
  5. Donohue, S.,Long, M.,O'Connor, P.,Helle, T.E.,Pfaffhuber, A.A.,Rømoen, M.(2012).Multi-method geophysical mapping of quick clay.Near Surface Geophysics,10(3),207-219.
  6. Garofalo, F.,Foti, S.,Hollender, F.,Bard, P.,Cornou, C.,Cox, B.,Dechamp, A.,Ohrnberger, M.,Perron, V.,Sicilia, D.(2016).InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface-wave and borehole methods.Soil Dynamics and Earthquake Engineering,82,241-254.
  7. Garofalo, F.,Foti, S.,Hollender, F.,Bard, P.,Cornou, C.,Cox, B.,Ohrnberger, M.,Sicilia, D.,Asten, M.,Di Giulio, G.(2016).InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I:Intra-comparison of surface wave methods.Soil Dynamics and Earthquake Engineering,82,222-240.
  8. Giocoli, A.,Stabile, T.A.,Adurno, I.,Perrone, A.,Gallipoli, M.R.,Gueguen, E.,Norelli, E.,Piscitelli, S.(2015).Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy).Nat. Hazards Earth Syst. Sci.,15(2),315-323.
  9. Grandjean, G.,Gourry, J.C.,Sanchez, O.,Bitri, A.,Garambois, S.(2011).Structural study of the Ballandaz landslide (French Alps) using geophysical imagery.Journal of Applied Geophysics,75(3),531-542.
  10. Gupta, H. K.(ed.)(2011).Encyclopedia of Solid Earth Geophysics.Netherlands, Dordrecht:Springer.
  11. Huntley, D.,Bobrowsky, P.,Best, M.(2017).Combining Terrestrial and Waterborne Geophysical Surveys to Investigate the Internal Composition and Structure of a Very Slow-Moving Landslide Near Ashcroft, British Columbia, Canada.Advancing Culture of Living with Landslides: Volume 2 Advances in Landslide Science,Cham:
  12. Lee, J.H.,Park, H.J.(2016).Assessment of shallow landslide susceptibility using the transient infiltration flow model and GIS-based probabilistic approach.Landslides,13(5),885-903.
  13. Ling, C.,Xu, Q.,Zhang, Q.,Ran, J.,Lv, H.(2016).Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China).Journal of Applied Geophysics,131,154-162.
  14. Mahmood, K.,Ryu, J.H.,Kim, J.M.(2013).Effect of anisotropic conductivity on suction and reliability index of unsaturated slope exposed to uniform antecedent rainfall.Landslides,10(1),15-22.
  15. Marcato, G.,Mantovani, M.,Pasuto, A.,Zabuski, L.,Borgatti, L.(2012).Monitoring, numerical modelling and hazard mitigation of the Moscardo landslide (Eastern Italian Alps).Engineering geology,128,95-107.
  16. Palacky, G.(1988).Resistivity characteristics of geologic targets.SEG,1,53-129.
  17. Perrone, A.,Lapenna, V.,Piscitelli, S.(2014).Electrical resistivity tomography technique for landslide investigation: a review.Earth-Science Reviews,135,65-82.
  18. Rahimi, A.,Rahardjo, H.,Leong, E.C.(2010).Effect of antecedent rainfall patterns on rainfall-induced slope failure.Journal of Geotechnical and Geoenvironmental Engineering,137(5),483-491.
  19. Su, L.j,Xu, X.q.,Geng, X.y.,Liang, S.q.(2017).An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area.Engineering Geology,219(Supplement C),52-63.
  20. Tohari, A.,Koizumi, K.,Syahbana, A. J.,Oda, K.(2017).Understanding of Landslide Movement at Bumi Waluya Railway Station, Garut, Indonesia.Advancing Culture of Living with Landslides: Volume 2 Advances in Landslide Science,Cham:
  21. Torgoev, A.,Lamair, L.,Torgoev, I.,Havenith, H.B.(2013).A Review of Recent Case Studies of Landslides Investigated in the Tien Shan Using Microseismic and Other Geophysical Methods.Earthquake-Induced Landslides: Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012,Berlin, Heidelberg:
  22. Travelletti, J.,Sailhac, P.,Malet, J.P.,Grandjean, G.,Ponton, J.(2012).Hydrological response of weathered clay‐shale slopes: water infiltration monitoring with time‐lapse electrical resistivity tomography.Hydrological processes,26(14),2106-2119.
  23. Walton, G.,Lato, M.,Anschütz, H.,Perras, M.A.,Diederichs, M.S.(2015).Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation - Experience from the Äspö Hard Rock Laboratory in Sweden.Engineering Geology,196(Supplement C),210-221.
  24. Yalcinkaya, E.,Alp, H.,Ozel, O.,Gorgun, E.,Martino, S.,Lenti, L.,Bourdeau, C.,Bigarre, P.,Coccia, S.(2016).Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey.Journal of Applied Geophysics,134(Supplement C),23-35.
  25. Zarroca, M.,Linares, R.,Velásquez-López, P.C.,Roqué, C.,Rodríguez, R.(2015).Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador.Journal of Applied Geophysics,113(Supplement C),103-113.
  26. Zeng, R.Q.,Meng, X.M.,Zhang, F.Y.,Wang, S.Y.,Cui, Z.J.,Zhang, M.S.,Zhang, Y.,Chen, G.(2016).Characterizing hydrological processes on loess slopes using electrical resistivity tomography - A case study of the Heifangtai Terrace, Northwest China.Journal of Hydrology,541(Part B),742-753.
被引用次数
  1. 鄭裕適,溫惠鈺,陳耐錦,張國欽,柯建仲,林榮潤,李鳳梅(2021)。崩塌地滑動徵兆與地下水化學因子之關聯性分析。中華水土保持學報,52(1),1-15。