题名

應用攜帶式鑽探設備觀測天然林沖蝕溝的地表逕流及淺層地下水特性

并列篇名

Applying Portable Drilling Equipment to Explore the Characteristics of Surface Runoff and Shallow Groundwater along a Gully in a Natural Forest

DOI

10.29417/JCSWC.202109_52(3).0001

作者

蕭維震(Wei-Chen Hsiao);梁偉立(Wei-Li Liang)

关键词

崩積層 ; 伏流水 ; 攜帶式鑽探設備 ; 淺層地下水 ; colluvium ; hyporheic flow ; portable drilling equipment ; shallow groundwater

期刊名称

中華水土保持學報

卷期/出版年月

52卷3期(2021 / 09 / 01)

页次

121 - 134

内容语文

繁體中文

中文摘要

臺灣山高流急且降雨時空分布不均,水資源的永續利用是一個重大的議題,即便山區地下蘊含大量水資源,但國內有關山區地下水的研究侷限於深層地下水,對於山區淺層地下水的特性仍缺乏高空間解析度的資訊。為了釐清臺灣集水區源頭部淺層地下水的反應特性,本研究利用攜帶式鑽探設備於天然林沖蝕溝鑽鑿7口水井以觀測淺層地下水位,並建置簡易量水堰以利觀測地表逕流量。沖蝕溝的崩積層地層結構複雜,無法單憑地層結構判釋淺層地下水深度,需透過攜帶式鑽探設備的直接鑽探才可掌握地下水位深度。地下水動態依坡地區段而異,淺層地下水位最深與水位變動幅度最大的位置皆位於沖蝕溝中段,且中上段為水脈分散處,地表與地下的水文連結性弱。中下段為水脈匯集處,地表與地下的水文連結性強,而此水脈的流動型態屬於伏流水。本研究證實攜帶式鑽探設備可適用於臺灣山區的淺層地下水觀測,除了釐清源頭集水區的降雨逕流機制外,也有助於山區水資源的評估。

英文摘要

Sustainable utilization of water resources is a critical concern in Taiwan because of the island's environment features including mountainous topography, rapid surface flow, and uneven distribution of rainfall in time and space. Although groundwater resources are abundant in mountainous areas, most studies on groundwater monitoring in mountainous environments in Taiwan have focused on deep groundwater. By contrast, high-spatial-resolution information on shallow groundwater characteristics remains lacking. To determine the dynamics of shallow groundwater in headwater catchments in Taiwan, this study installed seven groundwater wells using portable drilling equipment and constructed simple weirs to monitor surface runoff at several locations along a gully in a natural forest. The geological structure of the gully was heterogeneous and could be classified as colluvium. The depth of the groundwater table could not be estimated using geological structure information; however, it could be directly detected by boring using the portable drilling equipment. The dynamics of the groundwater varied with the locations along the gully. The deepest point of the shallow groundwater and the largest variations in the shallow groundwater table were both observed at the middle slope. Shallow groundwater pathways were divergent at the upper-middle slope where the hydrological connectivity between surface runoff and shallow groundwater was weak. By contrast, shallow groundwater pathways were convergent at the lower-middle slope where the hydrological connectivity between surface runoff and shallow groundwater was strong. The flowing pattern of shallow groundwater could be classified as hyporheic flow. This study demonstrated that portable drilling equipment can be effectively employed for shallow groundwater observations in mountainous areas in Taiwan; this approach can help to clarify the mechanism of rainfall-runoff processes in headwater catchments and to evaluate the water resources in mountainous environments.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. 陳振宇, C.C.,劉維則, W.Z.,許家祥, C.H.(2017)。使用 QPESUMS 雨量資料建立崩塌災害預警模式。中華水土保持學報,48(1),44-55。
    連結:
  2. 鄭名宏, M.H.,梁偉立, W.L.(2019)。應用簡易動力貫入法判釋地層結構。中華水土保持學報,50(1),22-31。
    連結:
  3. Burt, T.P.,McDonnell, J.J.(2015).Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses.Water Resources Research,51(8),5919-5928.
  4. Cai, Z.,Ofterdinger, U.(2016).Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland.Journal of Hydrology,535,71-84.
  5. Calmels, D.,Galy, A.,Hovius, N.,Bickle, M.,West, A.J.,Chen, M.C.,Chapman, H.(2011).Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan.Earth and Planetary Science Letters,303(1-2),48-58.
  6. Chen, C.Y.,Fujita, M.(2013).An analysis of rainfall-based warning systems for sediment disasters in Japan and Taiwan.International Journal of Erosion Control Engineering,6(2),159-174.
  7. Gabrielli, C.P.,McDonnell, J.J.(2012).An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments.Hydrological Processes,26(4),622-632.
  8. Gabrielli, C.P.,McDonnell, J.J.,Jarvis, W.T.(2012).The role of bedrock groundwater in rainfall–runoff response at hillslope and catchment scales.Journal of Hydrology,450-451,117-133.
  9. Gabrielli, C.P.,Morgenstern, U.,Stewart, M.K.,McDonnell, J.J.(2018).Contrasting groundwater and streamflow ages at the Maimai Watershed.Water Resources Research,54,3937-3957.
  10. Hale, V.C.,McDonnell, J.J.,Stewart, M.K.,Solomon, D.K.,Doolitte, J.,Ice, G.G.,Pack, R.T.(2016).Effect of bedrock permeability on stream base flow mean transit time scaling relations: 2. Process study of storage and release.Water Resources Research,52,1375-1397.
  11. Hsu, S.M.,Hsu, J.P.,Ke, C.C.,Lin, Y.T.,Huang, C.C.(2020).Rock mass permeability classification schemes to facilitate groundwater availability assessment in mountainous areas: a case study in Jhuoshuei river basin of Taiwan.Geosciences Journal,24(2),209-224.
  12. Hsu, S.M.,Li, J.F.(2020).Analysis and quantification of groundwater recession characteristics in regolith-bedrock aquifers: a case study in the mid- and upper-Choshuei river basin in central Taiwan.Environmental Earth Sciences,79(5)
  13. Kosugi, K.,Fujimoto, M.,Katsura, S.,Kato, H.,Sando, Y.,Mizuyama, T.(2011).Localized bedrock aquifer distribution explains discharge from a headwater catchment.Water Resources Research,47(7)
  14. Liang, W.L.(2020).Dynamics of pore water pressure at the soil-bedrock interface recorded during a rainfall-induced shallow landslide in a steep natural forested headwater catchment, Taiwan.Journal of Hydrology,587,125003.
  15. Liang, W.L.,Chan, M.C.(2017).Spatial and temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment.Journal of Hydrology,546,405-418.
  16. McDonnell, J.J.,Sivapalan, M.,Vaché, K.,Dunn, S.,Grant, G.,Haggerty, R.,Hinz, C.,Hooper, R.,Kirchner, J.,Roderick, M.L.,Selker, J.,Weiler, M.(2007).Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology.Water Resources Research,43(7),W07301.
  17. Muñoz-Villers, L.E.,McDonnell, J.J.(2012).Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate.Water Resources Research,48(9),W09528.
  18. Ó Dochartaigh, B.É.,Archer, N.A.L.,Peskett, L.,MacDonald, A.M.,Black, A.R.,Auton, C.A.,Merritt, J.E.,Gooddy, D.C.,Bonell, M.(2019).Geological structure as a control on floodplain groundwater dynamics.Hydrogeology Journal,27(2),703-716.
  19. Penna, D.,van Meerveld, H.J.,Zuecco, G.,Dalla Fontana, G.,Borga, M.(2016).Hydrological response of an Alpine catchment to rainfall and snowmelt events.Journal of Hydrology,537,382-397.
  20. Pierce, A.A.,Parker, B.L.,Ingleton, R.,Cherry, J.A.(2018).Novel well completions in small diameter coreholes created using portable rock drills.Groundwater Monitoring & Remediation,38(1),42-55.
  21. Rinderer, M.,van Meerveld, H.J.,Seibert, J.(2014).Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid?.Water Resources Research,50(7),6067-6080.
  22. Scheliga, B.,Tetzlaff, D.,Nuetzmann, G.,Soulsby, C.(2018).Groundwater dynamics at the hillslope–riparian interface in a year with extreme winter rainfall.Journal of Hydrology,564,509-528.
  23. Tesoriero, A.J.,Spruill, T.B.,Mew, H.E.,Farrell, K.M.,Harden, S.L.(2005).Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times.Water Resources Research,41(2)
  24. Yamakawa, Y.,Kosugi, K.,Masaoka, N.,Sumida, J.,Tani, M.,Mizuyama, T.(2012).Combined geophysical methods for detecting soil thickness distribution on a weathered granitic hillslope.Geomorphology,145-146,56-69.
  25. 王志豪, C.H.(2005)。Taiwan, ROC,國立臺灣大學森林環境暨資源學系=National Taiwan University。
  26. 王相華, H.H.,潘富俊, F.J.,劉景國, C.K.,于幼新, Y.H.,洪聖峰, S.F.(2000)。台灣北部福山試驗林永久樣區之植物社會分類及梯度分析。臺灣林業科學,15(3),411-428。
  27. 江崇榮, C.J.,汪中和, C.H.(2002)。以氫氧同位素組成探討屏東平原之地下水補注源。經濟部中央地質調查所彙刊,15,49-67。
  28. 江崇榮, C.J.,黃智昭, C.C.,陳瑞娥, J.E.,費立沅, L.Y.(2004)。屏東平原地下水補注量及抽水量之評估。經濟部中央地質調查所彙刊,17,21-51。
  29. 呂宗烜, T.H.,梁偉立, W.L.(2014)。應用簡易貫入試驗及大地比電阻法推估崩積地土壤岩層界面。中華水土保持學報,45(4),234-242。
  30. 林光清, K.C.,洪富文, F.W.,程煒兒, W.E.,蔣先覺, H.C.,張雲翔, U.C.(1996)。福山試驗林土壤調查與分類。臺灣林業科學,11(2),159-174。
  31. 張振生, C.S.(2000)。Taiwan, ROC,國立臺灣大學森林環境暨資源學系=National Taiwan University。
  32. 張智欽, C.C.(2000)。水文環境變遷與地下水位變化之關係-兼論員山地區缺水問題。宜蘭技術學報,4,147-161。
  33. 陳信雄, H.H.(1996)。哈盆溪集水區伏流水動態之研究(一)。臺灣實驗林研究報告,10(3),1-18。
  34. 陳信雄, H.H.,張振生, C.S.(1998)。哈盆溪集水區伏流水動態之研究(二)伏流水之追蹤與檢層。臺灣實驗林研究報告,12(1),1-13。
  35. 陳信雄, H.H.,楊蔚宇, W.Y.,張振生, C.S.(1999)。哈盆溪集水區伏流水動態之研究(三)。臺灣實驗林研究報告,13(2),119-128。
  36. 陳信雄, H.H.,楊蔚宇, W.Y.,張振生, C.S.(1999)。哈盆溪集水區伏流水動態之研究(四)。臺灣實驗林研究報告,13(4),279-293。
  37. 經濟部水利署=Water Resources Agency(2018).河道伏流水取水布置試驗研究.台灣=Taiwan:水利署水利規劃試驗所=Water Resources Planning Institute.
  38. 經濟部水利署=Water Resources Agency(2015).臺灣地區伏流水調查規劃參考手冊(草案).台灣=Taiwan:水利署水利規劃試驗所=Water Resources Planning Institute.
  39. 詹孟浚, M.C.,梁偉立, W.L.(2014)。以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位。中華水土保持學報,45(2),85-94。
  40. 賴彥任, Y.J.,張振生, C.S.,魏聰輝, T.H.,洪志遠, C.Y.(2010)。溪頭大學坑集水區之崩積層地下水特性探討。臺灣實驗林研究報告,24(2),109-121。