题名

建物及人員在土石流災害中之脆弱性探討-以莫拉克風災之南沙魯里為例

并列篇名

Vulnerability Assessment of Buildings and Residents for the Catastrophic Debris Flow in Nansalu Village during Typhoon Morakot

DOI

10.29417/JCSWC.202303_54(1).0007

作者

周憲德(Hsien-Ter Chou);曹鼎志(Ting-Chi Tsao);許志豪(Chih-Hao Hsu);李璟芳(Ching-Fang Lee);黃建豪(Chien-Hao Huang)

关键词

坡地災害 ; 土石流 ; 脆弱性 ; 淤埋深度 ; slopeland disaster ; debris flow ; vulnerability ; deposition depth

期刊名称

中華水土保持學報

卷期/出版年月

54卷1期(2023 / 03 / 01)

页次

70 - 79

内容语文

繁體中文;英文

中文摘要

本文經由現地調查與災情訪談,探討2009年莫拉克風災時於納瑪夏區南沙魯里發生土石流之過程並分析建物及人員的受災情況。本文提出估算土石流尖峰速度及堆積土方量之公式,可用以評估土石流的規模。遭土石流沖毀的建物其室外淤埋深度介於2.5 m-4.0 m之範圍,而受損建物的室內淤埋深度與室外淤埋深之比值約為0.73。土石流之破壞力除考慮速度及淤埋深度外,亦應考量土石流挾帶巨大石塊及漂流木之撞擊效應。當室外淤埋深度超過2.0 m時容易造成人員傷亡,且女性於戶外之致死率明顯較男性高。女性長者及幼兒之行動能力最弱,應及早疏散至安全處所。本文並提出降低聚落人員及建物脆弱性的調適策略。

英文摘要

A catastrophic debris flow occurred in Nansalu Village during Typhoon Morakot on August 9, 2009. After the event, we conducted field investigations and interviews with local residents to explore the magnitude and the process of the debris flow. We propose equations to obtain both the peak velocity and the deposition volume of the debris flow. The outdoor deposition depths of destroyed buildings exceeded 2.5 m, and the ratio between the indoor and outdoor deposition depths for damaged buildings was approximately 0.73. The impact of boulders and large woody debris accompanying the snout should be considered in vulnerability assessments of buildings. When the deposition depth exceeds 1.5 m, fatalities increase both indoor and outdoor for residents. Both older adult women and infants are at higher risk when debris flows occur. Strategies to reduce the vulnerability of buildings and residents are also proposed in this study.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 生物環境與多樣性
工程學 > 土木與建築工程
工程學 > 市政與環境工程
参考文献
  1. 自由時報 (2009),無懼土石流四英雄救出 21 村民https://news.ltn.com.tw/news/focus/paper/327438。(Liberty Times Net (2009/08/15) Brave 4 heroes rescued 21 villagers from the catastrophic debris flow (in Chinese))
  2. Costa, JE(1984).Physical geomorphology of debris flows.Developments and Applications of Geomorphology,Berlin:
  3. Fothergill, A.(1996).Gender, risk and disaster.International Journal of Mass Emergencies and Disasters,14(1),33-56.
  4. Fuchs, S.,Keiler, M.,Ortlepp, R.,Schinke, R.,Papathoma-Köhle, M.P.(2019).Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward.Journal of Hydrology,575,587-595.
  5. IPCC(2007).Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  6. Kang, H.,Kim, Y.(2016).The physical vulnerability of different types of building structure to debris flow events.Natural Hazards,80,1475-1493.
  7. Lee, J.H.,Oak, S.Y.,Jun, H.D.(2016).The Study of the Critical Depth and Critical Velocity of Casualties on Mud Flow.Journal of the Korean Society of Hazard Mitigation,16(2),399-405.
  8. Lo, W.C.,Tsao, T.C.,Hsu, C.H.(2012).Building vulnerability to debris flows in Taiwan: a preliminary study.Natural Hazards,64,2107-2128.
  9. Narasimhan, H.,Ferlisi, S.,Cascini, L.,De Chiara, G.,Faber, M.H.(2016).A cost–benefit analysis of mitigation options for optimal management of risks posed by flow-like phenomena.Natural Hazards,81,117-144.
  10. Papathoma-Köhle, M.,Gems, B.,Sturm, M.,Fuchs, S.(2017).Matrices, curves and indicators: a review of approaches to assess physical vulnerability to debris fows.Earth-Science Reviews, Rev.,171,272-288.
  11. Pierson, T.C.(1980).Eosion and deposition by debris flow at Mount Thomas, North Canterbury, New Zealand.Earth Surface Process,5,227-247.
  12. Rickenmann, D.(1999).Empirical relationships for debris flows.Natural Hazards,19,47-77.
  13. Salvati, P.,Petrucci, O.,Rossi, M.,Bianchi, C.,Pasqua, A.A.,Guzzetti, F.(2018).Gender, age and circumstances analysis of flood and landslide fatalities in Italy.Science of The Total Environment,610-611,867-879.
  14. Tang, C.,Rengers, N.,Van Asch, T.W.J.,Yang, Y.H.,Wang, G.F.(2011).Triggering conditions and depositional characteristics of a disastrous debris-flow event in Zhouqu city, Gansu Province, northwestern China.Natural Hazards and Earth System Science,11(11),2903-2912.
  15. 尹孝元, H.Y.,黃清哲, C.J.,連惠邦, H.P.,李秉乾, B.J.,周天穎, T.Y.,王晉倫, C.L.(2006)。自動化土石流觀測系統之發展及應用。中華水土保持學報,37(2),91-109。
  16. 水保局 2009 重大災害事件 https://246.swcb.gov.tw/Achievement/MajorDisasters。(Soil and Water Conservation Bureau (2009), Reports on Major Disasters in 2009. (in Chinese))
  17. 周憲德, H.T.,楊祥霖, H.L.,李璟芳, C.F.,黃郅軒, J.H.(2015)。火炎山土石流之流動型態與地聲特性分析。中華水土保持學報,46(2),1-7。
  18. 財團法人中興工程顧問社=Sinotech Consulting Inc.(2008)。,水保局=Soil and Water Conservation Bureau, Taiwan。
  19. 廖偉民, W.M.,周憲德, H.T.,林銘郎, M.L.(1999)。棄土區滑動引發土石流之案例分析。中華水土保持學報,30(2),157-165。
被引用次数
  1. (2024).Spreading Dynamics and Splatters of Mud Droplets Impinging on Horizontal and Inclined Surfaces.中華水土保持學報,55(1),14-22.