题名

醫療人工智慧應用爭議與法制規範課題

并列篇名

Legal Study on Medical Artificial Intelligence

作者

余啟民(Jimmy C. Yu)

关键词

人工智慧 ; 醫療 ; 醫療器材軟體 ; 演算法 ; 風險評估 ; 問責 ; Artificial Intelligence ; medical ; SaMD ; Algorithm ; Risk Assessment ; Accountability

期刊名称

東吳法律學報

卷期/出版年月

34卷2期(2022 / 10 / 01)

页次

25 - 63

内容语文

繁體中文

中文摘要

人工智慧技術改變包括醫療在內、幾近所有產業的固有面貌。研究指出診斷支持、疾病預防及影像診斷是醫療人工智慧最具潛力的三個應用領域,然而人工智慧技術於醫療領域的運用亦衍生若干過往新興課題。面對此一嶄新科技帶來的挑戰與規範課題,在病患可得直接感知的外部應用部分,最受矚目者當為「醫療器材軟體」(SaMD),而現時規範趨勢大抵以衡平SaMD發展並確保其安全無虞為目標,如美國2021年提出的SaMD行動計畫,係立於產品生命週期之基礎提出SaMD規範重點方針。而不易為外界感知的醫療人工智慧內在應用,亦即機器學習/演算法所產生之課題,除演算法可能造成醫療專業知識水平下降外,演算法本身欠缺透明度及存在偏見/歧視可能,無疑是醫療人工智慧發展上最受質疑之處。主要國家提出的規範機制,無論是建議性文件或實質性立法推動,逐步聚焦如何避免人工智慧應用出現歧視性結果,並確保充足的透明度與獨立性。針對國內醫療人工智慧的應用推動與相關之法制建構,本文建議可優先聚焦:1、建立醫療領域「人工智慧風險評估機制」;2、建立醫療人工智慧應用行為之「問責機制」;3、建立醫療人工智慧系統「持續檢視機制」;及4、研議必要的醫療人工智慧倫理規範。此外,亦應同步確保資料品質及醫療主管機關在立法與執法層面之充分參與,亦至為重要。

英文摘要

Artificial Intelligence (AI) technology is being introduced and applied in almost every industry. PwC identified three areas with the biggest AI potential for medical, including supporting diagnosis, early identification of potential pandemics and imaging diagnostics. However, the application of AI technology in the medical field has also caused lots of new issues. In the external application area, the focus is on Software as Medical Device (SaMD). The current regulatory trend is to emphasize equalizing the development of SaMD and ensuring its security. The Action Plan proposed by the United States in 2021 is based on the product-life-cycle concept and proposes the regulatory focus direction of SaMD. Machine Learning/Algorithm is an indispensable intrinsic application of medical AI. Studies have shown that algorithms may contribute to a decline in medical expertise, other possible problems include a lack of transparency and the possibility of discrimination. It is necessary to construct supervision leg al system toward application of medical AI. This article holds that the following matters should be given priority: 1. Establish "AI Risk-Assessment mechanism" in the medical field; 2. Establish "Accountability mechanism" for medical AI application behavior; 3. Establish "continuous inspection mechanism" for medical AI Systems; 4. Necessary Ethical regulation of medical AI.

主题分类 社會科學 > 法律學
参考文献
  1. 林書弘,陳牧言(2019)。人工智慧技術於智慧醫療之理論探討與實務應用。護理雜誌,66(2),7-13。
    連結:
  2. 蔡及時(2020)。人工智慧融合於醫療照護之研究。護理雜誌,67(5),12-18。
    連結:
  3. World Medical Association Statement on Augmented Intelligence in Medical Care, https://www.wma.net/policies-post/wma-statement-on-augmented-intelligence-in-medical-care/ (last visited May 2, 2022).
  4. Amirah Al Idrus, Could a language test diagnose Alzheimer's? IBM is laying the groundwork, Questex LLC (Oct. 22, 2020), available at https://www.fiercebiotech.com/medtech/could-a-language-test-diagnose-alzheimer-s(last visited May 2, 2022).
  5. Bambauer, Jane R.(2017).Dr. Robot.U.C. Davis L. Rev.,51,383.
  6. Andrew Burt, New AI Regulations Are Coming. Is Your Organization Ready? Harv. Bus. Rev. (Apr. 30, 2021), available at https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready(last visited May 2, 2022).
  7. Jeffrey Dastin, New AI Regulations Are Coming. Is Your Organization Ready?, Reuters (Oct. 11, 2018), available at https://www.reuters.com/article/us-amazon-com- jobs-automation-insight-idUSKCN1MK08G (last visited May 2, 2022).
  8. Deloitte(2018).,未出版
  9. Heinz-Uwe Dettling, Kynya Jacobus & Dirk Tassilo Wassen, How the challenge of regulating AI in healthcare is escalating, Ernst & Young (Aug. 2, 2021), available at https://www.ey.com/en_id/law/how-the-challenge-of-regulating-ai-in-healthcare-is-escalating (last visited May 2, 2022).
  10. Alex Engler, Five ways that Open Source Software shapes AI policy, Brookings Institution (Aug. 18, 2021), available at https://www.brookings.edu/blog/techtank/2021/08/18/five-ways-that-open-source-software-shapes-ai-policy/ (Dec. 23, 2021) (last visited May 2, 2022).
  11. European Commission, Policy and investment recommendations for trustworthy Artificial Intelligence (2019), full text available at https://futurium.ec.europa.eu/en/european-ai-alliance/open-library/policy-and-investment-recommendations-trustworthy-artificial-intelligence (last visited May 2, 2022).
  12. European Commission, Ethics guidelines for trustworthy AI (2019), full text available at https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf(last visited May 2, 2022).
  13. Federal Trade Commission, Using Artificial Intelligence and Algorithms, FTC (Apr. 8, 2021), available at https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms (last visited May 2, 2022).
  14. Federal Trade Commission, Aiming for truth, fairness, and equity in your company’s use of AI, FTC (Apr. 21, 2021), available at https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai(last visited May 2, 2022).
  15. Food and Drug Administration, FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems, FDA (Apr. 11, 2018), available at https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-certain-diabetes-related-eye (last visited May 2, 2022).
  16. Food and Drug Administration, Artificial Intelligence and Machine Learning in Software as a Medical Device, FDA (Sept. 22, 2021), available at https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device (last visited May 2, 2022).
  17. Froomkin, A. Michael,Kerr, Ian,Pineau, Joelle(2019).When AIs Outperform Doctors: Confronting the Challenges of a Tort-Induced Over-Reliance on Machine Learning.Ariz. L. Rev.,61,33.
  18. Arend Hintze, From Reactive Robots to Sentient Machines: The 4 Types of AI, Live Science Nov. 14, 2020, available at https://www.livescience.com/56858-4-types-artificial-intelligence.html(last visited May 2, 2022).
  19. Ivanov, Stanislav,Webster, Craig(2019).Robots, Artificial Intelligence and Service Automation in Travel, Tourism and Hospitality.Emerald Publishing.
  20. Naveen Joshi, 7 Types of Artificial Intelligence, Forbes (June 19, 2019), available at https://www.forbes.com/sites/cognitiveworld/2019/06/19/7-types-of-artificial-in-telligence/#6201808233ee (last visited May 2, 2022).
  21. Lauren A. Kahn, US Leadership in Artificial Intelligence Is Still Possible, Council on Foreign Relations (Oct. 28, 2021), available at https://www.cfr.org/blog/us-leadership-artificial-intelligence-still-possible (last visited May 2, 2022).
  22. Brian Kalis., et al, 10 Promising AI Applications in Health Care, Harv. Bus. Rev. (May 10, 2018), available at https://hbr.org/2018/05/10-promising-ai-applications-in-health-care(last visited May 2, 2022).
  23. Kerasidou, Charalampia(2021).Before and beyond trust: reliance in medical AI.Journal of Medical Ethics,2021,1.
  24. Ray Kurzweil, Long Live AI, Forbes (Aug. 15, 2005), available at https://www.forbes.com/forbes/2005/0815/030.html? sh=5661ee97e8f0 (last visited May 2, 2022).
  25. Chiara Longoni.et al, Morewedge, For Patients to Trust Medical AI, They Need to Understand It, Harv. Bus. Rev. (Sept. 3, 2021), available at https://hbr.org/2021/09/ for-patients-to-trust-medical-ai-they-need-to-understand-it(last visited May 2, 2022).
  26. Martinez, Rex(2019).Artificial Intelligence: Distinguishing Between Types & Definitions.Nev. L. J.,19,1015.
  27. McKinsey(2018).,未出版
  28. Aashish Mehra, Healthcare IT Market worth $821.1 billion by 2026, Markets and Markets (Aug. 25, 2021), available at https://www.marketsandmarkets.com/PressReleases/healthcare-it-market.asp(last visited May 2, 2022).
  29. Miailhe, Nicolas,Hodes, Cyrus(2017).The Third Age of Artificial Intelligence, Field Actions Science Reports.Field Actions Science Reports,17,6.
  30. Terence Mills, How AI Is Revolutionizing Health Care, Forbes (Jan. 15, 2020), available at https://www.forbes.com/sites/forbestechcouncil/2020/01/15/how-ai-is-revol-utionizing-health-care/? sh=2ddada04403c (last visited May 2, 2022).
  31. PwC(2017).,未出版
  32. Hagar Ravet, Israel's Zebra Medical acquired by Nanox for just $200 million, CalcalisTech (Aug. 10, 2021), available at https://www.calcalistech.com/ctech/articles/0,7340,L-3914640,00.html (last visited May 2, 2022).
  33. Röösli, Eliane(2021).Bias at Warp Speed: How AI May Contribute to the Disparities Gap in the Time of COVID-19.Journal of the American Medical Informatics Association,28(1),190.
  34. Surden, Harry(2019).Artificial Intelligence and Law: An Overview.Ga. St. UL Rev.,35,1305.
  35. The White House, Executive Order on Maintaining American Leadership in Artificial Intelligence (2019), full text available at https://www.federalregister.gov/docu-ments/2019/02/14/2019-02544/maintaining-american-leadership-in-artificial-intel-ligence (last visited May 2, 2022).
  36. The White House, Guidance for Regulation of Artificial Intelligence Applications (2020), full text available at https://www.whitehouse.gov/wp-content/uploads/2020/01/Draft-OMB-Memo-on-Regulation-of-AI-1-7-19.pdf (last visited May 2, 2022).
  37. UK Department of Health & Social Care, Accelerating Artificial Intelligence in health and care: results from a state of the nation survey 35(2018).
  38. Starre Vartan, Racial Bias Found in a Major Health Care Risk Algorithm, Scientific American (Oct. 24, 2019), available at https://www.scientificamerican.com/article/racial-bias-found-in-a-major-health-care-risk-algorithm/ (last visited May 2, 2022).
  39. Jane Wakefield, Artificial intelligence-created medicine to be used on humans for firsttime, BBC News (Jan. 30, 2020), available at https://www.bbc.com/news/tech-nology-51315462 (last visited May 2, 2022).
  40. World Health Organization(2021).Ethics and Governance of Artificial Intelligence for Health: WHO Guide.
  41. WORLD INTELLECTUAL PROPERTY ORGANIZATION(2019).WIPO TECHNOLOGY TRENDS 2019: ARTIFICIAL INTELLIGENCE.
  42. 牛惠之(2020)。淺論人工智慧時代醫療器材軟體的風險與管理思維。生物產業科技管理叢刊,8,39-56。
  43. 曲建仲(2018)。機器是如何學習與進步?人工智慧的核心技術與未來。科學月刊,580,282-291。
  44. 胡雅筑、徐仕瑋,人工智慧近期國際動態—美國 FTC 針對人工智慧偏見之建議與歐盟人工智慧法律框架草案,2021/5/14,https://hsu.legal/article/43(最後瀏覽日:2022年 5 月 2 日)。
  45. 張彩琳(2019)。人工智慧在醫療的應用及未來展望現。台灣醫檢雜誌,34(2),1-11。
  46. 張麗卿(2020)。AI倫理準則及其對臺灣法制的影響。月旦法學雜誌,301,97-117。
  47. 郭戎晉(2020)。論人工智慧技術應用、法律問題定位及監管立法趨勢─以美國實務發展為核心。成大法學,39,173-235。
  48. 郭庭妤(2019)。美國醫療軟體上市監管規範之革新。法律與生命科學,8(1),81-111。
  49. 陳念舜(2020)。電子與傳統產業跨界醫材轉型。智動化雜誌,64,54-58。
  50. 陳彥元,溫明強,周承復(2020)。人工智慧輔助醫療。澄清醫護管理雜誌,16(3),4-8。
  51. 陳鋕雄,跨越死亡之谷:智慧醫材加速的六個法律挑戰,網址:https://futurecity.cw.com.tw/article/2209,最後瀏覽日:2022 年 5 月 2 日。
  52. 陳學德,AI 衍生醫療糾紛責任歸誰?,財團法人臺中市醫師公會,網址:http://www.tcmed.org.tw/edcontent.php? lang=tw&tb=125&id=10 (最後瀏覽日:2022 年 5 月2 日)。
  53. 楊惇筑(2021)。各主要國家醫療器材軟體上市審查制度及變更管理方向之比較。當代醫藥法規月刊,128,12-28。
  54. 廖家宜,2021 人工智慧 5 大領域趨勢台灣新創怎麼看?,網址:https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=&id=604850,最後瀏覽日:2022年 5 月 2 日。
  55. 蔡甫昌,胡嘉輝(2021)。人工智慧醫療時代的倫理思維。月旦醫事法報告,58,7-19。
  56. 蔡宜臻,FDA 發佈人工智慧/機器學習行動計畫,網址:https://stli.iii.org.tw/article-detail.aspx? no=64&tp=1&d=8628(最後瀏覽日:2022 年 5 月 2 日)。
  57. 衛生福利部(2021)。衛生福利部,高齡社會白皮書,頁 2,2021 年 9 月。
  58. 賴飛羆(2020)。人工智慧對醫療的影響。台灣醫學,24(1),41-42。
被引用次数
  1. (2024)。論2024年WHO發表之「人工智慧於健康領域之倫理與治理」與台灣現況。台灣家庭醫學雜誌,34(3),136-143。
  2. (2024)。醫療器材安全及其刑法規制-兼論醫療器材智能化的影響。中正大學法學集刊,85,1-55。