题名

天氣因素於網路團購消費者行為之影響研究

并列篇名

The Relationship of Online Group Buying Behavior Incorporating the Effect of Weather

作者

柯瓊鳳(Chiung-Feng Ko);邵楀媃(Yu-Jou Shao);洪明欽(Ming-Chin Hung)

关键词

網路團購 ; 感知有用性 ; 機器學習 ; 隨機森林 ; 體感溫度 ; Online shopping ; Perceived usefulness ; Machine learning ; Random Forest ; Apparent temperature

期刊名称

東吳經濟商學學報

卷期/出版年月

105期(2022 / 12 / 01)

页次

81 - 114

内容语文

繁體中文

中文摘要

本研究目的在驗證天氣因素為網路團購消費者之感知有用性之一,並補充網路團購消費者感知的相關研究。本研究利用台灣網路團購的真實資料及氣象觀測資料,運用機器學習中四種分類模型進行比較,首先實證預測模型,再進行天氣預測感知分析。研究結果顯示,在十大產品類別中,隨機森林(Random Forest)為實證中較優模型;其次,在六種天氣因素中,最重要之天氣變數是體感溫度和日照時數。研究結果印證天氣變化影響消費者之評價,與既有研究(Chu et al., 2013;Zwebner et al., 2014;Watanabe et al.,2016;Tian et al.,2018;Schlager et al.,2020)呼應,體感溫度為本研究之創見。再者,體感溫度不僅為重要之天氣變數,體感溫度之高低也影響不同地區、品類之銷售,再次說明團購消費者行為與天氣具有關聯。

英文摘要

The purpose of this research is to verify that the weather factor is one of the perceived usefulness of online group buying consumers, and to supplement related research on the perception of online group buying consumers. This study uses one of Taiwan's online group real data and uses the meteorological observation data to supplement the related research in Taiwan. We test four models of machine learning to find out the best predictive model for online marketing and then conduct weather forecast analysis. These results show that among the ten product collections, random forest method is the empirical best practice, and among the six weather factors, the most important weather variables for the online group buying platform as a whole are apparent temperature and sunshine duration. Apparent temperature is the original idea of the research. These findings consent that online consumers behavior are effected by weather changes, and echo with existing researches (Chu et al., 2013;Zwebner et al., 2014;Watanabe et al., 2016;Tian et al., 2018;Schlager et al., 2020). The results also exhibit that the apparent temperature is not only an important weather variable, but also affects the sales of different locations and collections. This research contributes to the analysis of the diversity of group buying behavior and weather marketing.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Anand, K. S.,Aron, R.(2003).Group Buying on the Web: A Comparison of Price-Discovery Mechanisms.Management Science,49(11),1546-1562.
  2. Anderson, J.,Daultani, V.,Muman, T.,Batran, M.(2019).The Importance of Weather for E-Commerce Orders Forecasting.Proceedings of the 2019 International Conference on E-Business and E-commerce Engineering (EBEE 2019),Bali, Indonesia:
  3. Bai, L.,Hu, M.,Ma, Y.,Liu, M.(2019).A Hybrid Two-Phase Recommendation for Group-Buying E-Commerce Applications.Applied Sciences,9(15),31-41.
  4. Behnamian, A.,Millard, K.,Banks, S. N.,White, L.,Richardson, M.,Pasher, J.(2017).A Systematic Approach for Variable Selection with Random Forests: Achieving Stable Variable Importance Values.IEEE Geoscience and Remote Sensing Letters,14(11),1988-1992.
  5. Cheng, H. H.,Huang, S. W.(2013).Exploring Antecedents and Consequence of Online Group-Buying Intention: An Extended Perspective on Theory of Planned Behavior.International Journal of Information Management,33(1),185-198.
  6. Chu, K.,Kim, S.,Choi, C.(2013).A Study on the Impact of Weather on Sales And Optimal Budget Allocation of Weather Marketing.Journal of the Korean Operations Research and Management Science Society,38(1),153-181.
  7. Denissen, J. J.,Butalid, L.,Penke, L.,Van Aken, M. A.(2008).The Effects of Weather on Daily Mood: A Multilevel Approach.Emotion,8(5),662-667.
  8. Edosio, U. Z.(2014).Big Data Analytics and Its Application in E-Commerce.Proceedings of E-Commerce Technologies,Bradford, UK:
  9. Elbasiony, R. M.,Sallam, E. A.,Eltobely, T. E.,Fahmy, M. M.(2013).A Hybrid Network Intrusion Detection Framework Based on Random Forests and Weighted K-Means.Ain Shams Engineering Journal,4(4),753-762.
  10. Erdomus, I. E.,Cicek, M.(2011).Online Group Buying: What is There for the Consumers?.Procedia-Social and Behavioral Sciences,24,308-316.
  11. Goyal, M.,Maryanne, Q.(2012).Hancock and Homayoun Hatami, Selling into Micromarkets.Harvard Business review,90(7),7-8.
  12. HEVAC Humidity Group (2016), Humidity and its Impact on Human Comfort and Wellbeing in Occupied Buildings, HEVAC Humidity Group. From: http://www.humiditysolutions.co.uk/wp-content/uploads/2016/06/HUMIDITY-AND-THE-IMPACT-ON-HUMAN-COMFORT-250416.pdf.
  13. Ho, S.C.,Kauffman, R.J.,Liang, T.P.(2011).Internet-Based Selling Technology and E-Commerce Growth: A Hybrid Growth Theory Approach with Cross-Model Inference.Information Technology and Management,12(4),409-429.
  14. Hossin, M.,Sulaiman, M. N.(2015).A Review on Evaluation Metrics for Data Classification Evaluations.International Journal of Data Mining & Knowledge Management Process,5(2),1-11.
  15. Hsu, M. H.,Chang, C. M.,Chuang, L. W.(2015).Understanding the Determinants of Online Repeat Purchase Intention and Moderating Role of Habit: The Case of Online Group-Buying in Taiwan.International Journal of Information Management,35(1),45-56.
  16. Hsu, M. H.,Chuang, L. W.,Hsu, C. S.(2014).Understanding Online Shopping Intention: The Roles of Four Types of Trust and Their Antecedents.Internet Research,24(3),332-352.
  17. Javadi, M. H. M.,Dolatabadi, H. R.,Nourbakhsh, M.,Poursaeedi, A.,Asadollahi, A. R.(2012).An Analysis of Factors Affecting on Online Shopping Behavior of Consumers.International Journal of Marketing Studies,4(5),81-98.
  18. Ji, S.,Wang, X.,Zhao, W.,Guo, D.(2019).An Application of A Three-Stage Xgboost-Based Model to Sales Forecasting of A Cross-Border E-Commerce Enterprise.Mathematical Problems in Engineering,2019(2),1-15.
  19. Kauffman, R. J.,Lai, H.,Ho, C. T.(2010).Incentive Mechanisms, Fairness and Participation in Online Group-Buying Auctions.Electronic Commerce Research and Applications,9(3),249-262.
  20. Lee, J. J.,Gino, F.,Staats, B. R.(2014).Rainmakers: Why Bad Weather Means Good Productivity.Journal of Applied Psychology,99(3),504-513.
  21. Li, Q.,Xing, J.,Liu, O.,Chong, W.(2017).The Impact of Big Data Analytics on Customers Online Behaviour.Proceedings of the International MultiConference of Engineers and Computer Scientists 2017, Vol II, (IMECS 2017),Hong Kong:
  22. Li, Y.,Johnson, E. J.,Zaval, L.(2011).Local Warming.Psychological Science,22(4),454-459.
  23. Liang, T. P.,Robert, L.,Sarker, S.,Cheung, C. M.,Matt, C.,Trenz, M.,Turel, O.(2021).Artificial Intelligence and Robots In Individuals' Lives: How to Align Technological Possibilities and Ethical Issues.Internet research,31(1),1-10.
  24. Liang, X.,Ma, L.,Xie, L.,Yan, H.(2014).The Informational Aspect of the Group-Buying Mechanism.European Journal of Operational Research,234(1),331-340.
  25. Liu, H.,Wang, W.,Liu, D.,Wang, H.,Du, N.(2012).HappyGo: A Field Trial of Local Group Buying.Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (CSCW 2012),Seattle, USA:
  26. Liu, Y.,Sutanto, J.(2015).Online Group-Buying: Literature Review and Directions for Future Research.ACM SIGMIS Database: the DATABASE for Advances in Information Systems,46(1),39-59.
  27. Lundberg, S. M.,Lee, S. I.(2017).December, A Unified Approach to Interpreting Model Predictions.Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017),Long Beach, USA:
  28. Matsuo, T.(2009).A Reassuring Mechanism Design for Traders in Electronic Group Buying.Applied Artificial Intelligence,23(1),1-15.
  29. Mosavi, A.,Vaezipour, A.(2013).,University of Tallinn.
  30. Murray, K. B.,Di Muro, F.,Finn, A.,Popkowski Leszczyc, P.(2010).The Effect of Weather on Consumer Spending.Journal of Retailing and Consumer Services,17(6),512-520.
  31. Parsa, A. B.,Movahedi, A.,Taghipour, H.,Derrible, S.,Mohammadian, A. K.(2020).Toward Safer Highways, Application of XGBoost and SHAP for Real-Time Accident Detection and Feature Analysis.Accident Analysis & Prevention,136,105405.
  32. Peterson, R. A.,Balasubramanian, S.,Bronnenberg, B. J(1997).Exploring the Implications of The Internet For Consumer Marketing.Journal of the Academy of Marketing Science,25,329-346.
  33. Schlager, Tobias,de Bellis, Emanuel,Hoegg, JoAndrea(2020).How and When Weather Boosts Consumer Product Valuation.Journal of the Academy of Marketing Science,48,695-711.
  34. Setiawan, A.,Nathania, A.,Halim, A. G.(2019).Group Buying Application Mobile Based With Naïve Bayes Methods.2019 IEEE International Conference on Communication, Networks and Satellite (Comnetsat),Makassar, Indonesia:
  35. Seven & i Holdings. (2012), “The Next Step toward Comprehensive Value,” ANNUAL REPORT 2012, Seven & i Holdings Co., Ltd, From: https://www.7andi.com/library/dbps_data/_template_/_res/en/ir/library/ar/pdf/2012_all.pdf. accessed on May 5, 2022.
  36. Simonsohn, U.(2010).Weather to Go to College.The Economic Journal,120(543),270-280.
  37. Singh, Manpreet,Ghutla, Bhawick,Jnr, Reuben Lilo,Mohammed, Aesaan F S,Rashid, Mahmood A(2017).Walmart’s Sales Data Analysis - A Big Data Analytics Perspective.2017 4th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE),Mana Island, Fiji:
  38. Steinker, S.,Hoberg, K.,Thonemann, U. W.(2017).The Value of Weather Information For E Commerce Operations.Production and Operations Management,26(10),1854-1874.
  39. Tan, K. H.,Zhan, Y.,Ji, G.,Ye, F.,Chang, C.(2015).Harvesting Big Data to Enhance Supply Chain Innovation Capabilities: An Analytic Infrastructure Based on Deduction Graph.International Journal of Production Economics,165,223-233.
  40. The Center for Media Justice(2013).,Center for Media Justice.
  41. Tian, J.,Zhang, Y.,Zhang, C.(2018).Predicting Consumer Variety-Seeking Through Weather Data Analytics.Electronic Commerce Research and Applications,28,194-207.
  42. Tsang, M.,Ho, Shu-Chun,Liang, T.P.(2004).Consumer Attitudes toward Mobile Advertising: An Empirical Study.International Journal of Electronic Commerce,8(3),65-78.
  43. Watanabe, T.,Muroi, H.,Naruke, M.,Yono, K.,Kobayashi, G.,Yamasaki, M.(2016).Prediction of Regional Goods Demand Incorporating the Effect of Weather.2016 IEEE International Conference on Big Data (Big Data),Washington, USA:
  44. Zhang, R.,Li, G.,Wang, Z.,Wang, H.(2016).Relationship Value Based on Customer Equity Influences on Online Group-Buying Customer Loyalty.Journal of Business Research,69(9),3820-3826.
  45. Zheng, H.,Wu, Y.(2019).A Xgboost Model with Weather Similarity Analysis and Feature Engineering for Short-Term Wind Power Forecasting.Applied Sciences,9(15),1-12.
  46. Zwebner, Y.,Lee, L.,Goldenberg, J.(2014).The Temperature Premium: Warm Temperatures Increase Product Valuation.Journal of Consumer Psychology,24(2),251-259.
  47. 中央氣象局,2020,「天氣、氣候,傻傻分不清楚」,取自https://pweb.cwb.gov.tw/PopularScience/index.php/weather/99-%E5%A4%A9%E6%B0%A3%E3%80%81%E6%B0%A3%E5%80%99%EF%BC%8C%E5%82%BB%E5%82%BB%E5%88%86%E4%B8%8D%E6%B8%85%E6%A5%9A, accessed on November 20, 2020. Central Weather Bureau. (2020, Weather, Climate, Stupidly Unclear.)
  48. 內閣府,2018,ビッグデータ.AIを活用した消費分析,內閣府,日本,取自 https://www5.cao.go.jp/j-j/wp/wp-je18/pdf/p01032.pdf, accessed on November 2, 2020.
  49. 末廣徹,(2018),「史上最も早い梅雨明け」と景気の奇妙な関係夏場の消費にプラスでも「悪いジンクス」あり,週刊東洋経済,取自https://toyokeizai.net/articles/-/229337.
  50. 林震岩(2019).智慧企業 e 化 4.0 - AI 時代的企業資訊系統.台北:旗標科技.
  51. 許玉金,張博雄(2015)。臺灣體感溫度初步分析。中央氣象局 104 年天氣分析與預報研討會,台灣,台北市:
被引用次数
  1. 凌祥發,林文晟,周思妤(2023)。探討金融科技知覺風險對行動支付使用意圖之研究。東吳經濟商學學報,107,1-32。