题名

The Copula Approach to Characterizing Dependence Structure in Neural Populations

DOI

10.4077/CJP.2010.AMM036

作者

Rick L. Jenison

关键词

copula ; neural dependence ; multi-information ; Fisher information

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

53卷6期(2010 / 12 / 01)

页次

373 - 381

内容语文

英文

英文摘要

The question as to the role that correlated activity plays in the coding of information in the brain continues to be one of the most important in neuroscience. One approach to understanding this role is to formally model the ensemble responses as multivariate probability distributions. We have previously introduced alternatives to linear assumptions of multivariate Gaussian dependence for spike timing in neural ensembles using the probabilistic copula approach. In probability theory the copula ”couples” marginal distributions to form flexible multivariate distribution functions for characterizing ensemble behavior. The parametric copula can be factored out of the joint probability density, and as such is independent and isolated from the marginal densities. This greatly simplifies the analysis, and allows a direct examination of the shape of the dependence independent of the marginals. The shape of the copula function goes beyond describing the dependence with a single summarizing statistic. In this review, we illustrate the construction of the copula, and how it contributes to the analysis of information conveyed by populations of neurons.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Abbott, L. F.,Dayan, P.(1999).The effect of correlated variability on the accuracy of a population code.Neural Comput,11,91-101.
  2. Akaike, H.(1974).A new look at the statistical model identification.IEEE T. Automat. Contr.,19,723.
  3. Ali, M. M.,Mikhail, N. N.,Haq, M. S.(1978).Class of bivariate distributions including bivariate logistic.J. Multivariate Anal.,8,405-412.
  4. Brown, E. N.,Barbieri, R.,Eden, U. T.,Frank, L. M.,Feng, J.(2004).Computational Neuroscience: A Comprehensive Approach.London:Chapman and Hall CRC Press.
  5. Brown, E. N.,Frank, L. M.,Tang, D. D.,Quirk, M. C.,Wilson, M. A.(1998).A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.J. Neurosci.,18,7411-7425.
  6. Cherubini, G.,Luciano, E.,Vecchiato, W.(2004).Copula methods in finance.Chichester:John Wiley & Sons.
  7. Clayton, D. G.(1978).Model for association in bivariate life tables and its application in epidemiological-studies of familial tendency in chronic disease incidence.Biometrika,65,141-151.
  8. Eden, U. T.,Frank, L. M.,Barbieri, R.,Solo, V.,Brown, E. N.(2004).Dynamic analysis of neural encoding by point process adaptive filtering.Neural Comput.,16,971-998.
  9. Frank, M.(1979).On the simultaneous associativity of F(x,y) and x + y - F(x,y).Aequations Math.,19,194-226.
  10. Jenison, R. L.(2000).Correlated cortical populations can enhance sound localization performance.J. Acoust. Soc. Am.,107,414-421.
  11. Jenison, R. L.(2001).Decoding first-spike latency: A likelihood approach.Neurocomputing,38,239-248.
  12. Jenison, R. L.,Reale, R. A.(2003).Likelihood approaches to sensory coding in auditory cortex.Network,14,83-102.
  13. Jenison, R. L.,Reale, R. A.(2004).The shape of neural dependence.Neural Comput.,16,665-672.
  14. Jenison, R. L.,Reale, R. A.,Hind, J. E.,Brugge, J. F.(1998).Modeling of auditory spatial receptive fields with spherical approximation functions.J. Neurophysiol.,80,2645-2656.
  15. Jenison, R. L.,Schnupp, J. W. H.,Reale, R. A.,Brugge, J. F.(2001).Auditory space-time receptive field dynamics revealed by spherical white-noise analysis.J. Neurosci.,21,4408-4415.
  16. Joe, H.(1997).Multivariate Models and Dependence Concepts.London:Chapman & Hall.
  17. Kass, R. E.,Ventura, V.(2001).A spike-train probability model.Neural Comput.,13,1713-1720.
  18. Mari, D. D.,Kotz, S.(2001).Correlation and dependence.London:Imperial College Press.
  19. Mikosch, T.(2006).Copulas: Tales and facts.Extremes,9,3-20.
  20. Mikosch, T.(2006).Copulas: Tales and facts-rejoinder.Extremes,9,55-62.
  21. Nelsen, R. B.(1999).An Introduction to Copulas.New York:Springer-Verlag.
  22. Nirenberg, S.,Carcieri, S. M.,Jacobs, A. L.,Latham, P. E.(2001).Retinal ganglion cells act largely as independent encoders.Nature,411,698-701.
  23. Nirenberg, S.,Latham, P. E.(2003).Decoding neuronal spike trains: How important are correlations?.Proc. Natl. Acad. Sci. U.S.A.,100,7348-7353.
  24. Onken, A.,Grunewolder, S.,Munk, M. H. J.,Obermayer, K.(2009).Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation.PLoS. Comput. Biol.,5,e1000577.
  25. Pawitan, Y.(2001).In all likelihood: statistical modelling and inference using likelihood.Oxford:Clarendon Press.
  26. Poon, P. W.(ed.),Brugge, J. F.(ed.)(1998).Central Auditory Processing and Neural Modeling.New York:Plenum.
  27. Quiroga, R. Q.,Panzeri, S.(2009).Extracting information from neuronal populations: information theory and decoding approaches.Nat. Rev. Neurosci.,10,173-185.
  28. Reale, R. A.,Jenison, R. L.,Brugge, J. F.(2003).Directional sensitivity of neurons in the primary auditory (AI) cortex: Effects of soundsource intensity level.J. Neurophysiol.,89,1024-1038.
  29. Schweizer, B.,Sklar, A.(1983).Probabilistic metric spaces.New York:North Holland.
  30. Sklar, A.(1959).Fonctions de répartition à n dimensions et leur marges.Publ. Int. Stat. Univ. Paris.