题名

Fine Frequency-Modulation Trigger Features of Midbrain Auditory Neurons Extracted by the Progressive Thresholding Method-A Preliminary Study

作者

T.R. Chang;T.W. Chiu;X. Sun;Paul W.F. Poon

关键词

inferior colliculus ; FM ; STRF ; component trigger feature

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

53卷6期(2010 / 12 / 01)

页次

430 - 438

内容语文

英文

英文摘要

Spectro-temporal receptive fields (STRFs) are commonly used to characterize response properties of central auditory neurons and for visualizing 'trigger features'. However, trigger features in STRF maps typically have a blurry appearance. Therefore it is unclear what details could be embedded in them. To investigate this, we developed a new method called 'progressive thresholding' to resolve fine structures in the STRFs, and applied the method to FM responses recorded from single units at the auditory midbrain of anesthetized rats. Random FM tones of a narrow frequency range (~0.5 octave) were first presented to evoked spike responses at the cell's best frequency. Perispike modulating time waveforms collected (50 msec long, n=1,500 to 4,000 tracings) were used to generate STRF based on spike-triggered-averaging. After supra-threshold areas of pixel counts had been determined through a step of progressive thresholding in the map, those peri-spike modulating waveforms passing through each area were dejittered systematically. At what seemed to be an optimal threshold, multiple trigger features (up to a maximum of 4 fine bands) were extracted from the initially simple-looking STRF. Results show that fine FM trigger features are present in STRFs and that they can be resolved with the present method of analysis.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Chiu, T. W.,Poon, P. W.(2007).Multiple-band trigger features of midbrain auditory neurons revealed in composite spectro-temporal receptive fields.Chinese J. Physiol.,50,105-112.
    連結:
  2. Aertsen, A. M.,Johannesma, P. I.(1981).A comparison of the spectrotemporal sensitivity of auditory neurons to tonal and natural stimuli.Biol. Cybern.,42,145-156.
  3. Aertsen, A. M.,Johannesma, P. I.(1981).The spectro-temporal receptive field. A functional characteristic of auditory neurons.Biol. Cybern.,42,133-143.
  4. Aldworth, Z. N.,Miller, J. P.,Gedeon, T.,Cummins, G. I.,Dimitrov, A. G.(2005).Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spiketiming precision of sensory interneurons.J. Neurosci.,25,5323-5332.
  5. Andoni, S.,Li, N.,Pollak, G. D.(2007).Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations.J. Neurosci.,27,4882-4893.
  6. Bergan, J. F.,Knudsen, E. I.(2009).Visual modulation of auditory responses in the owl inferior colliculus.J. Neurophysiol.,101,2924-2933.
  7. Bieser, A.(1998).Processing of twitter-call fundamental frequencies in insula and auditory cortex of squirrel monkeys.Exp. Brain Res.,122,139-148.
  8. Britvina, T.,Eggermont, J. J.(2008).Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex.Neurosci.,154,1576-1588.
  9. Chang, T. R.,Chiu, T. W.,Chung, P. C.,Poon, P. W.(2010).Should spikes be treated with equal weightings in the generation of spectro-temporal receptive fields?.J. Physiol. (Paris),104,215-222.
  10. Chang, T. R.,Chung, P. C.,Chiu, T. W.,Poon, P. W.(2005).A new method for adjusting neural response jitter in the STRF obtained by spike-trigger averaging.Biosystems,79,213-222.
  11. Clopton, B. M.,Winfield, J. A.(1973).Tonotopic organization in the inferior colliculus of the rat.Brain Res.,56,355-368.
  12. Cohen, Y. E.,Theunissen, F.,Russ, B. E.,Gill, P.(2007).Acoustic features of rhesus vocalizations and their representation in the ventrolateral prefrontal cortex.J. Neurophysiol.,97,1470-1484.
  13. David, S. V.,Mesgarani, N.,Fritz, J. B.,Shamma, S. A.(2009).Rapid synaptic depression explains nonlinear modulation of spectrotemporal tuning in primary auditory cortex by natural stimuli.J. Neurosci.,29,3374-3386.
  14. deCharms, R. C.,Blake, D. T.,Merzenich, M. M.(1998).Optimizing sound features for cortical neurons.Science,280,1439-1443.
  15. Depireux, D. A.,Simon, J. Z.,Klein, D. J.,Shamma, S. A.(2001).Spectrotemporal response field characterization with dynamic ripples in ferret primary auditory cortex.J. Neurophysiol.,85,1220-1234.
  16. Doupe, A. J.,Kuhl, P. K.(1999).Birdsong and human speech: common themes and mechanisms.Ann. Rev. Neurosci.,22,567-631.
  17. Escabi, M. A.,Schreiner, C. E.(2002).Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.J. Neurosci.,22,4114-4131.
  18. Felsheim, C.,Ostwald, J.(1996).Responses to exponential frequency modulations in the rat inferior colliculus.Hearing Res.,98,137-151.
  19. Fritz, J.,Shamma, S.,Elhilali, M.,Klein, D.(2003).Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex.Nature Neurosci.,6,1216-1223.
  20. Gollisch, T.(2006).Estimating receptive fields in the presence of spiketime jitter.Network,17,103-129.
  21. Grana, G. D.,Billimoria, C. P.,Sen, K.(2009).Analyzing variability in neural responses to complex natural sounds in the awake songbird.J. Neurophysiol.,101,3147-3157.
  22. Heil, P.,Rajan, R.,Irvine, D. R.(1992).Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters.Hearing Res.,63,108-134.
  23. Kao, M. C.,Poon, P. W. F.,Sun, X.(1997).Modeling of the response of midbrain auditory neurons in the rat to their vocalization sounds based on FM sensitivities.Biosystems,40,103-109.
  24. Lesica, N. A.,Grothe, B.(2008).Dynamic spectrotemporal feature selectivity in the auditory midbrain.J. Neurosci.,28,5412-5421.
  25. Malmierca, M. S.(2004).The inferior colliculus: a center for convergence of ascending and descending auditory information.Neuroembryol. Aging,3,215-229.
  26. Miller, L. M.,Escabí, M. A.,Read, H. L.,Schreiner, C. E.(2002).Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.J. Neurophysiol.,87,516-527.
  27. Nagarajan, S. S.,Cheung, S. W.,Bedenbaugh, P.,Beitel, R. E.,Schreiner, C. E.,Merzenich, M. M.(2002).Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex.J. Neurophysiol.,87,1723-1737.
  28. Nagel, K. I.,Doupe, A. J.(2008).Organizing principles of spectrotemporal encoding in the avian primary auditory area field L.Neuron,58,938-955.
  29. Noreña, A. J.,Tomita, M.,Eggermont, J. J.(2003).Neural changes in cat auditory cortex after a transient pure-tone trauma.J. Neurophysiol.,90,2387-2401.
  30. Poon, P. W. F.,Chiu, T. W.(2000).Similarities of FM and AM receptive space of single units at the auditory midbrain.Biosystems,58,229-237.
  31. Poon, P. W.,Chen, X.,Cheung, Y. M.(1992).Differences in FM response correlate with morphology of neurons in the rat inferior colliculus.Exp. Brain Res.,91,94-104.
  32. Poon, P. W.,Chen, X.,Hwang, J. C.(1991).Basic determinants for FM responses in the inferior colliculus of rats.Exp. Brain Res.,83,598-606.
  33. Poon, P. W.,Yu, P. P.(2000).Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.Neurosci. Lett.,289,9-12.
  34. Qi, Y.,Casseday, J. H.,Covey, E.(2007).Response properties and location of neurons selective for sinusoidal frequency modulations in the inferior colliculus of the big brown bat.J. Neurophysiol.,98,1364-1373.
  35. Rahne, T.,Sussman, E.(2009).Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment.Eur. J. Neurosci.,29,205-211.
  36. Rauschecker, J. P.(1995).Compensatory plasticity and sensory substitution in the cerebral cortex.Trends Neurosci.,18,36-43.
  37. Rees, A.,Kay, R. H.(1985).Delineation of FM rate channels in man by detectability of a three-component modulation waveform.Hearing Res.,18,211-221.
  38. Rees, A.,Møller, A. R.(1983).Responses of neurons in the inferior colliculus of the rat to AM and FM tones.Hearing Res.,10,301-330.
  39. Sen, K.,Theunissen, F. E.,Doupe, A. J.(2001).Feature analysis of natural sounds in the songbird auditory forebrain.J. Neurophysiol.,86,1445-1458.
  40. Shechter, B.,Depireux, D. A.(2007).Stability of spectro-temporal tuning over several seconds in primary auditory cortex.Neurosci.,148,806-814.
  41. Suga, N.(1968).Analysis of frequency-modulated and complex sounds by single auditory neurones of bats.J. Physiol.,198,51-80.
  42. Theunissen, F. E.,Sen, K.,Doupe, A. J.(2000).Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.J. Neurosci.,20,2315-2331.
  43. Valentine, P. A.,Eggermont, J. J.(2004).Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex.Hearing Res.,196,119-133.
  44. Versnel, H.,Zwiers, M. P.,van Opstal, A. J.(2009).Spectrotemporal response properties of inferior colliculus neurons in alert monkey.J. Neurosci.,29,9725-9739.
  45. Wang, X.,Merzenich, M. M.,Beiltel, R.,Schreiner, C. E.(1995).Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics.J. Neurophysiol.,74,2685-2706.
  46. Whitfield, C.,Evans, E. F.(1965).Responses of auditory cortical neurons to stimuli of changing frequency.J. Neurophysiol.,28,655-672.
  47. Woolley, S. M. N.,Gill, P. R.,Theunissen, F. E.(2006).Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain.J. Neurosci.,26,2499-2512.
  48. Woolley, S. M. N.,Patrick, R.,Gill, P. R.,Fremouw, T.,Theunissen, F. E.(2009).Functional groups in the avian auditory system.J. Neurosci.,29,2780-2793.