题名

Neuronal Jitter: Can We Measure the Spike Timing Dispersion Differently?

DOI

10.4077/CJP.2010.AMM031

作者

Lubomir Kostal;Petr Marsalek

关键词

perfect integrator neuronal model ; standard deviation ; entropy ; spike timing jitter

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

53卷6期(2010 / 12 / 01)

页次

454 - 464

内容语文

英文

英文摘要

We propose a novel measure of statistical dispersion of a positive continuous random variable: the entropy-based dispersion (ED). We discuss the properties of ED and contrast them with the widely employed standard deviation (SD) measure. We show that the properties of SD and ED are different: while SD is a second moment characteristics measuring the dispersion relative to the mean value, ED measures an effective spread of the probability distribution and is more closely related to the notion of randomness of spiking activity. We apply both SD and ED to analyze the temporal precision of neuronal spiking activity of the perfect integrate-and-fire model, which is a plausible neural model under the assumption of high input synaptic activity. We show that SD and ED may give strikingly different results for some widely used models of presynaptic activity.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Cramer, H. Mathematical methods of statistics. Princeton: Princeton University Press, 1946.
  2. Adrian, E. The basis of sensation. New York: W.W. Norton and Co., 1928.
  3. Abramowitz, M.,Stegun, I.(1965).Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables.New York:Dover.
  4. Ash, R. B.(1965).Information Theory.New York:Dover.
  5. Berger, D.,Pribram, K.,Wild, H.,Bridges, C.(1990).An analysis of neural spike-train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency.Exp. Brain Res.,80,129-134.
  6. Bershadskii, A.,Dremencov, E.,Fukayama, D.,Yadid, G.(2001).Probabilistic properties of neuron spiking time-series obtained in vivo.Eur. Phys. J. B,24,409-413.
  7. Bhumbra, G.,Dyball, R.(2003).Measuring spike coding in the rat supraoptic nucleus.J. Physiol.,555,281-296.
  8. Bhumbra, G.,Inyushkin, A.,Dyball, R.(2004).Assessment of spike activity in the supraoptic nucleus.J. Neuroendocrinol.,16,390-397.
  9. Buracas, G.,Albright, T.(1999).Gauging sensory representations in the brain.Trends Neurosci.,22,303-309.
  10. Burkitt, A.(2006).A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.Biol. Cybern.,95,1-19.
  11. Burns, B.,Pritchard, R.(1964).Contrast discrimination by neurons in the cat's visual cerebral cortex.J. Physiol.,175,445-463.
  12. Chakravarty, S.(1990).Ethical social index numbers.New York:Springer-Verlag.
  13. Chhikara, R.,Folks, J.(1989).The Inverse Gaussian Distribution: theory, methodology, and applications.New York:Marcel Dekker.
  14. Cover, T.,Thomas, J.(1991).Elements of information theory.New York:Wiley.
  15. Covey, E.,Casseday, J.(1991).The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound.J. Neurosci.,11,3456.
  16. Cox, D.,Lewis, P.(1966).The statistical analysis of series of events.London:Chapman and Hall.
  17. David, H.,Nagaraja, H.(2003).Order statistics.New Jersey:Wiley.
  18. Fenton, A.,Lansky, P.,Olypher, A.(2002).Properties of the extra positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing.Neuroscience,111,553-566.
  19. Gerstein, G.,Mandelbrot, B.(1964).Random walk models for the spike activity of a single neuron.Biophys. J.,4,41-68.
  20. Gerstner, W.,Kempter, R.,van Hemmen, J.,Wagner, H.(1996).A neuronal learning rule for sub-millisecond temporal coding.Nature,383,76-78.
  21. Gerstner, W.,Kistler, W.(2002).Spiking Neuron Models: Single Neurons, Populations, Plasticity.Cambridge:Cambridge University Press.
  22. Ivry, R.(1997).Cerebellar timing systems.Int. Rev. Neurobiol.,41,555.
  23. Kass, R. E.,Ventura, V.,Brown, E. N.(2005).Statistical issues in the analysis of neuronal data.J. Neurophysiol.,94,8-25.
  24. Kendall, M.,Stuart, A.(1977).The advanced theory of statistics.London:Charles Griffin.
  25. Kostal, L.,Lansky, P.(2007).Variability and randomness in stationary neuronal activity.Biosystems,89,44-49.
  26. Kostal, L.,Lansky, P.(2006).Similarity of interspike interval distributions and information gain in a stationary neuronal firing.Biol. Cybern.,94,157-167.
  27. Kostal, L.,Lansky, P.,Rospars, J. P.(2007).Review: Neuronal coding and spiking randomness.Eur. J. Neurosci.,26,2693-2701.
  28. Kostal, L.,Lansky, P.,Zucca, C.(2007).Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model, Network.Comp. Neur. Sys.,18,63-75.
  29. Lánský, P.,Rodriguez, R.,Sacerdote, L.(2004).Mean instantaneous firing frequency is always higher than the firing rate.Neural Comput.,16(3),477-489.
  30. Lánský, P.,Sato, S.(1999).The stochastic diffusion models of nerve membrane depolarization and interspike interval generation.J. Peripher. Nerv. Syst.,4,27-42.
  31. Levine, M.(1991).The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells.Biol. Cybern.,65,459-467.
  32. Marsalek, P.,Koch, C.,Maunsell, J.(1997).On the relationship between synaptic input and spike output jitter in individual neurons.Proc. Natl. Acad. Sci. U.S.A.,94,735-740.
  33. Matell, M.,Meck, W.(2000).Neuropsychological mechanisms of interval timing behavior.BioEssays,22,94-103.
  34. McKeegan, D.(2002).Spontaneous and odour evoked activity in single avian olfactory bulb neurones.Brain Res.,929,48-58.
  35. Moore, G.,Perkel, D.,Segundo, J.(1966).Statistical analysis and functional interpretation of neuronal spike data.Annu. Rev. Physiol.,28,493-522.
  36. Perkel, D.,Bullock, T.(1968).Neural coding.Neurosci. Res. Prog. Sum.,3,405-527.
  37. Pouzat, C.,Chaffiol, A.(2009).Automatic spike train analysis and report generation. An implementation with R, R2HTML and STAR.J. Neurosci. Methods,181,119-144.
  38. Ratliff, F.,Hartline, H.,Lange, D.(1968).Variability of interspike intervals in optic nerve fibers of limulus: Effect of light and dark adaptation.Proc. Natl. Acad. Sci. U.S.A.,60,464-469.
  39. Reed, M.,Blum, J.,Mitchell, C.(2002).Precision of neural timing: Effects of convergence and time-windowing.J. Comp. Neurosci.,13,35-47.
  40. Reeke, G.,Coop, A.(2004).Estimating the temporal interval entropy of neuronal discharge.Neural Comput.,16,941-970.
  41. Rieke, F.,Steveninck, R.,Warland, D.,Bialek, W.(1997).Spikes: Exploring the Neural Code.Cambridge:MIT Press.
  42. Shadlen, M.,Newsome, W.(1998).The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding.J. Neurosci.,18,3870-3896.
  43. Softky, W.,Koch, C.(1993).The highly irregular firing of cortical cells is inconsistent with temporal integration of random Epsps.J. Neurosci.,13,334-350.
  44. Stein, R.,Gossen, E.,Jones, K.(2005).Neuronal variability: noise or part of the signal?.Nat. Rev. Neurosci.,6,389-397.
  45. Theunissen, F.,Miller, J.(1995).Temporal encoding in nervous systems: A rigorous definition.J. Comp. Neurosci.,2,149-162.
  46. Tuckwell, H.(1988).Introduction to Theoretical Neurobiology.New York:Cambridge University Press.
被引用次数
  1. Marsalek, Petr,Drapal, Marek(2010).Stochastic Model Shows How Cochlear Implants Process Azimuth in Real Auditory Space.中國生理學雜誌,53(6),439-446.