题名

Role of Sodium Channels in the Spontaneous Excitability of Early Embryonic Cardiomyocytes

DOI

10.4077/CJP.2014.BAC202

作者

Wei-Feng Huang;Ming Tang

关键词

action potentials ; cardiomyocytes ; embryo ; patch-clamp techniques ; sodium channels

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

57卷4期(2014 / 08 / 31)

页次

188 - 197

内容语文

英文

英文摘要

Sodium channels play an important role in action potentials. Moreover, some evidences recently suggested that sodium channels were responsible for murine sinoatrial node pacemaking. The aim of this study was to investigate the role of sodium channels in pacemaking in embryonic cardiomyocytes in early development stage (EDS). Whole-cell patch-clamp technique was employed to record sodium current of murine early embryonic cardiomyocytes. Current clamp technique was used to record the effect of 0.1, 1 and 10 μM tetrodotoxin (TTX) on embryonic cardiomyocytes pacemaking. Electrophysiology properties of sodium channels in embryonic cardiomyocytes corresponded to Na_v1.5, and the IC_(50) of TTX was 5.24 μM. TTX at 0.1 μM concentration had no effects on the pacemaking. TTX at 1 μM concentration, however, dramatically slowed the spontaneous beating rate from 73.975 ± 10.478 to 50.268 ± 10.476 cycle/min (P < 0.05), and the maximum upstroke velocity (dV/^(dt)max) of phase 4 from 0.074 ± 0.006 to 0.046 ± 0.007 V/s (P < 0.01). Furthermore, 1 μM TTX reduced the dV/^(dt)max of phase 0 from 16.405 ± 0.056 to 12.801 ± 0.084 V/s (P < 0.01), and increased the period of phase 4 from 710.342 ± 110.983 to 1320.618 ± 250.483 ms (P < 0.05). TTX at 1 μM also had some effects on the peak of phase 0 decreasing it from 40.621 ± 3.012 to 37.407 ± 2.749 mV (P < 0.05). But TTX at 1 μM had no effects on the period of phase 0. In some cells (9/13), TTX at 10 μM caused complete cessation of spontaneous action potentials. Our results suggested that the main expression subtype of sodium channels was Nav1.5 of early embryonic cardiomyocytes. And TTX-resistant sodium channels contributed to the initiation of action potentials of early embryonic cardiomyocytes, while TTX-sensitive sodium channels were not involved in initiation of action potentials.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Doss, M.X.,Sachinidis, A.,Hescheler, J.(2008).Human ES cell derived cardiomyocytes for cell replacement therapy: a current update.Chinese J. Physiol.,51,226-229.
    連結:
  2. Zhang, H.,Yang, L.,Yang, Z.,Zheng, X.(2013).Role of the late sodium current in rate-dependent repolarization of the canine ventricle.Chinese J. Physiol.,56,341-348.
    連結:
  3. Zhang, H.,Yang, L.,Yang, Z.,Zheng, X.(2013).Role of the late sodium current in rate-dependent repolarization of the canine ventricle.Chinese J. Physiol.,56,341-348.
    連結:
  4. Blechschmidt, S.,Haufe, V.,Benndorf, K.,Zimmer, T.(2008).Voltagegated Na+ channel transcript patterns in the mammalian heart are species-dependent.Prog. Biophys. Mol. Biol.,98,309-318.
  5. Carmeliet, E.(1987).Voltage-dependent block by tetrodotoxin of the sodium channel in rabbit cardiac Purkinje fibers.Biophys. J.,51,109-114.
  6. Davies, M.P.,An, R.H.,Doevendans, P.,Kubalak, S.,Chien, K.R.,Kass, R.S.(1996).Developmental changes in ionic channel activity in the embryonic murine heart.Circ. Res.,78,15-25.
  7. Fozzard, H.A.,Hanck, D.A.(1996).Structure and function of voltagedependent sodium channels: comparison of brain II and cardiac isoforms.Physiol. Rev.,76,887-926.
  8. Fujii, S.,Ayer, R.K., Jr.,DeHaan, R.L.(1988).Development of the fast sodium current in early embryonic chick heart cells.J. Membr. Biol.,101,209-223.
  9. Han, L.,Zhang, S.,Du, H.,Tang, M.,Liu, C.,Song, Y.,Jtirgen, H.(2004).Development-dependent change in autorhythmic activities of single embryonic cardiomyocyte of mouse.J. Huazhong Univ. Sci. Tech. [Health Sci.],33,385-387.
  10. Haufe, V.,Camacho, J.A.,Dumaine, R.,Günther, B.,Bollensdorff, C.,von Banchet, G.S.,Benndorf, K.,Zimmer, T.(2005).Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart.J. Physiol.,564,683-696.
  11. Hescheler, J.,Fleischmann, B.K.,Lentini, S.,Maltsev, V.A.,Rohwedel, J.,Wobus, A.M.,Addicks, K.(1997).Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis.Cardiovasc. Res.,36,149-162.
  12. Hescheler, J.,Fleischmann, B.K.,Wartenberg, M.,Bloch, W.,Kolossov, E.,Ji, G.,Addicks, K.,Sauer, H.(1999).Establishment of ionic channels and signalling cascades in the embryonic stem cellderived primitive endoderm and cardiovascular system.Cells Tissues Organs,165,153-164.
  13. Kaufmann, S.G.,Westenbroek, R.E.,Zechner, C.,Maass, A.H.,Bischoff, S.,Muck, J.,Wischmeyer, E.,Scheuer, T.,Maier, S.K.(2010).Functional protein expression of multiple sodium channel alpha-and beta-subunit isoforms in neonatal cardiomyocytes.J. Mol. Cell. Cardiol.,48,261-269.
  14. Klugbauer, N.,Welling, A.,Specht, V.,Seisenberger, C.,Hofmann, F.(2002).L-type Ca2+ channels of the embryonic mouse heart.Eur. J. Pharmacol.,447,279-284.
  15. Lei, M.,Jones, S.A.,Liu, J.,Lancaster, M.K.,Fung, S.S.,Dobrzynski, H.,Camelliti, P.,Maier, S.K.,Noble, D.,Boyett, M.R.(2004).Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking.J. Physiol.,559,835-848.
  16. Liang, H.,Tang, M.,Liu, C.,Luo, H.,Song, Y.,Hu, X.,Xi, J.,Gao, L.,Nie, B.,Li, S.,Lai, L.,Hescheler, J.(2004).Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developmental stages.Acta Pharmacol. Sin.,25,1450-1457.
  17. Luo, H.,Tang, M.,Du, Y.,Liu, C.,Jurgen, H.(2004).Developmental changes of If and Ica, L on the cardiomyocyte in mice of different embryonic stages.Chinese J. Microcirc.,14,7-9.
  18. Luo, H.,Tang, M.,Hu, X.,Song, M.,Liang, H.,Du, Y.,Zhang, Y.(2004).Isolation and electrophysiological characteristics of embryonic cardiomyocytes in mice.Acta Physiol. Sin.,56,651-655.
  19. Maier, S.K.,Westenbroek, R.E.,Schenkman, K.A.,Feigl, E.O.,Scheuer, T.,Catterall, W.A.(2002).An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart.Proc. Natl. Acad. Sci. USA,99,4073-4078.
  20. Maier, S.K.,Westenbroek, R.E.,Yamanushi, T.T.,Dobrzynski, H.,Boyett, M.R.,Catterall, W.A.,Scheuer, T.(2003).An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node.Proc. Natl. Acad. Sci. USA,100,3507-3512.
  21. Sasse, P.,Zhang, J.,Cleemann, L.,Morad, M.,Hescheler, J.,Fleischmann, B.K.(2007).Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells.J. Gen. Physiol.,130,133-144.
  22. Satin, J.,Kehat, I.,Caspi, O.,Huber, I.,Arbel, G.,Itzhaki, I.,Magyar, J.,Schroder, E.A.,Perlman, I.,Gepstein, L.(2004).Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes.J. Physiol.,559,479-496.
  23. Song, G.,Tang, M.,Liu, C.,Luo, H.,Liang, H.,Hu, X.,Xi, J.,Gao, L.,Fleischmann, B.,Hescheler, J.(2002).Developmental changes in functional expression and β-adrenergic regulation of If in the heart of mouse embryo.Cell Res.,12,385-394.
  24. Song, Y.,Tang, M.,Liu, C.,Liang, H.,Gao, L.,Xi, J.,Hu, X.,Luo, H.,Hescheler, J.(2005).Different signal molecules involved in the muscarinic modulation of pacemaker current If on the heart of mouse_embryo in different developmental stages.Acta Physiol. Sin.,57,33-38.
  25. Stieber, J.,Herrmann, S.,Feil, S.,Löster, J.,Feil, R.,Biel, M.,Hofmann, F.,Ludwig, A.(2003).The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart.Proc. Natl. Acad. Sci. USA,100,15235-15240.
  26. Viatchenko-Karpinski, S.,Fleischmann, B.K.,Liu, Q.,Sauer, H.,Gryshchenko, O.,Ji, G.J.,Hescheler, J.(1999).Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development.Proc. Natl. Acad. Sci. USA,96,8259-8264.
  27. Yasui, K.,Liu, W.,Opthof, T.,Kada, K.,Lee, J.K.,Kamiya, K.,Kodama, I.(2001).If current and spontaneous activity in mouse embryonic ventricular myocytes.Circ. Res.,88,536-542.
  28. Yatani, A.,Brown, A.M.(1985).The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes.Circ. Res.,56,868-875.
  29. Yu, L.,Gao, S.,Nie, L.,Tang, M.,Huang W.,Luo, H.,Hu, X.,Xi, J.,Zhu, M.,Zheng, Y.,Gao, L.,Zhang, L.,Song, Y.,Hescheler, J.,Liang, H.(2011).Molecular and functional changes in voltage-gated Na+ channels in cardiomyocytes during mouse embryogenesis.Circ. J.,75,2071-2079.
  30. Zhang, H.,Holden, A.V.,Kodama, I.,Honjo, H.,Lei, M.,Varghese, T.,Boyett, M.R.(2000).Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node.Am. J. Physiol. Heart Circ. Physiol.,279,H397-H421.
  31. Zimmer, T.(2010).Effects of tetrodotoxin on the mammalian cardiovascular system.Mar. Drugs,8,741-762.