题名

Regulation of Blood Glucose Level by Kainic Acid in Mice: Involvement of Glucocorticoid System and Non-NMDA Receptors

DOI

10.4077/CJP.2017.BAE397

作者

Chea-Ha Kim;Soo-Hyun Park;Yun-Beom Sim;Sung-Su Kim;Jun-Sub Jung;Naveen Sharma;Hong-Won Suh

关键词

CNQX ; glucocorticoid ; hyperglycemia ; kainic acid ; spinal ; supraspinal

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

60卷1期(2017 / 02 / 28)

页次

23 - 31

内容语文

英文

中文摘要

Kainic acid (KA) is a well-known excitatory neurotoxic substance. In the present study, effects of KA-injected intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level were investigated in ICR mice. We found that KA administered i.p., i.c.v. or i.t. increased the blood glucose and corticosterone levels, suggesting that KA-induced hyperglycemia appeared to be due to increased blood corticosterone level. In support of this finding, adrenalectomy (ADX) causes a reduction of KA-induced hyperglycemia and neuronal cell death in CA3 regions of the hippocampus. In addition, pretreatment with i.c.v. or i.t. in-jection of 6-cyano-7-nitroquinoxaline-2, 3-dione; a non-N-methyl-D-aspartate (NMDA) receptor blocker (CNQX) attenuated the i.p. and i.c.v. administered KA-induced hyperglycemia. KA administered i.c.v. caused an elevation of the blood corticosterone level whereas the plasma insulin level was reduced. Moreover, i.c.v. pretreatment with CNQX inhibited the decrease of plasma insulin level induced by KA i.c.v. injection, whereas the KA-induced plasma corticosterone level was further enhanced by CNQX pretreatment. Our results suggest that KA administered systemically or centrally produces hyperglycemia. A glucocorticoid (GC) system appears to be involved in KA-induced hyperglycemia. Furthermore, central non-NMDA receptors may be responsible for KA-induced hyperglycemia.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Anderson, R.E.,Tan, W.K.,Martin, H.S.,Meyer, F.B.(1999).Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra.Stroke,30,160-170.
  2. Ben-Ari, Y.(1985).Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.Neuroscience,14,375-403.
  3. Benveniste, H.(1991).The excitotoxin hypothesis in relation to cerebral ischemia..Cerebrovasc. Brain Metab. Rev.,3,213-245.
  4. Bleakman, D.,Lodge, D.(1998).Neuropharmacology of AMPA and kainate receptors.Neuropharmacology,37,1187-1204.
  5. Bodnar, I.,Banky, Z.,Zelena, D.,Halasz, B.(2009).Glutamate receptor antagonist infused into the hypothalamic suprachiasmatic nuclei interferes with the diurnal fluctuations in plasma prolactin and corticosterone levels and injected into the mesencephalic dorsal raphe nucleus attenuates the suckling stimulus-induced release of prolactin of the rat..Brain Res. Bull.,80,9-16.
  6. Carriedo, S.G.,Sensi, S.L.,Yin, H.Z.,Weiss, J.H.(2000).AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro.J. Neurosci.,20,240-250.
  7. Cho, K.,Little, H.J.(1999).Effects of corticosterone on excitatory amino acid responses in dopamine-sensitive neurons in the ventral tegmental area.Neuroscience,88,837-845.
  8. Choi, D.W.,Koh, J.Y.(1998).Zinc and brain injury.Annu. Rev. Neurosci.,21,347-375.
  9. Coussens, C.M.,Kerr, D.S.,Abraham, W.C.(1997).Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels.J. Neurophysiol.,78,1-9.
  10. De Kloet, E.R.,Vreugdenhil, E.,Oitzl, M.S.,Joels, M.(1998).Brain corticosteroid receptor balance in health and disease.Endocr. Rev.,19,269-301.
  11. Elliott, E.M.,Sapolsky, R.M.(1992).Corticosterone enhances kainic acid-induced calcium elevation in cultured hippocampal neurons.J. Neurochem,59,1033-1040.
  12. Evans, M.C.,Griffiths, T.,Meldrum, B.S.(1984).Kainic acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus.Neuropathol. Appl. Neurobiol.,10,285-302.
  13. Frederickson, C.J.,Hernandez, M.D.,McGinty, J.F.(1989).Translocation of zinc may contribute to seizure-induced death of neurons.Brain Res.,480,317-321.
  14. Gisselsson, L.,Smith, M.L.,Siesjo, B.K.(1999).Hyperglycemia and focal brain ischemia.J. Cereb. Blood Flow Metab,19,288-297.
  15. Glick, D.,Vonredlich, D.,Levine, S.(1964).Fluorometric determination of corticosterone and cortisol in 0.02-0.05 milliliters of plasma or submilligram samples of adrenal tissue.Endocrinology,74,653-655.
  16. Hoxworth, J.M.,Xu, K.,Zhou, Y.,Lust, W.D.,LaManna, J.C.(1999).Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation.Brain Res.,821,467-479.
  17. Hylden, J.L.,Wilcox, G.L.(1981).Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice.Brain Res.,217,212-215.
  18. Izquierdo, L.A.,Vianna, M.,Barros, D.M.,Mello e Souza, T.,Ardenghi, P.,Sant'Anna, M.K.,Rodrigues, C.,Medinam, J.H.,Izquierdo, I.(2000).Short- and long-term memory are differentially affected by metabolic inhibitors given into hippocampus and entorhinal cortex.Neurobiol. Learn. Mem,73,141-149.
  19. Johansen, F.F.,Diemer, N.H.(1986).Influence of the plasma glucose level on brain damage after systemic kainic acid injection in the rat.Acta Neuropathol,71,46-54.
  20. Kerwin, R.,Patel, S.,Meldrum, B.(1990).Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem..Neuroscience,39,25-32.
  21. Kim, C.H.,Park, S.H.,Sim, Y.B.,Kim, S.S.,Kim, S.J.,Lim, S.M.,Jung, J.S.,Suh, H.W.(2014).Effects of nateglinide and repaglinide administered intracerebroventricularly on the CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.Brain Res. Bull,4,36-41.
  22. Kim, C.H.,Park, S.H.,Sim, Y.B.,Kim, S.S.,Kim, S.J.,Lim, S.M.,Jung, J.S.,Suh, H.W.(2014).Effect of tolbutamide, glyburide and glipizide administered supraspinally on CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.Brain Res,1564,33-40.
  23. Kim, D.H.,Moon, Y.S.,Jung, J.S.,Suh, H.W.,Song, D.K.(2003).Route-dependent effects of the non-NMDA receptor antagonist CNQX on plasma corticosterone levels in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry,27,1055-1058.
  24. Koide, T.,Wieloch, T.W.,Siesjo, B.K.(1986).Chronic dexamethasone pretreatment aggravates ischemic neuronal necrosis.J. Cereb. Blood Flow Metab.,6,395-404.
  25. Krugers, H.J.,Knollema, S.,Kemper, R.H.,Ter Horst, G.J.,Korf, J.(1995).Down-regulation of the hypothalamo-pituitary-adrenal axis reduces brain damage and number of seizures following hypoxia/ ischaemia in rats.Brain Res.,690,41-47.
  26. Kwon, M.S.,Lee, J.K.,Park, S.H.,Sim, Y.B.,Jung, J.S.,Won, M.H.,Kim, S.M.,Suh, H.W.(2010).Neuroprotective effect of visnagin on kainic acid-induced neuronal cell death in the mice hippocampus.Korean J. Physiol. Pharmacol,14,257-263.
  27. Lam, C.K.,Chari, M.,Su, B.B.,Cheung, G.W.,Kokorovic, A.,Yang, C.S.,Wang, P.Y.,Lai, T.Y.,Lam, T.K.(2010).Activation of N-methyl- D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production.J. Biol. Chem.,285,21913-21921.
  28. Lauri, S.E.,Bortolotto, Z.A.,Bleakman, D.,Ornstein, P.L.,Lodge, D.,Isaac, J.T.,Collingridge, G.L.(2001).A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP..Neuron,32,697-709.
  29. Laursen, S.E.,Belknap, J.K.(1986).Intracerebroventricular injections in mice. Some methodological refinements.J. Pharmacol. Methods,16,355-357.
  30. Lee, J.K.,Choi, S.S.,Lee, H.K.,Han, K.J.,Han, E.J.,Suh, H.W.(2002).Effects of MK-801 and CNQX on various neurotoxic responses induced by kainic acid in mice.Mol. Cells,14,339-347.
  31. Lee, J.M.,Zipfel, G.J.,Choi, D.W.(1999).The changing landscape of ischaemic brain injury mechanisms.Nature,399,A7-A14.
  32. Lee, P.H.,Grimes, L.,Hong, J.S.(1989).Glucocorticoids potentiate kainic acid-induced seizures and wet dog shakes.Brain Res,480,322-325.
  33. Lin, B.,Ginsberg, M.D.,Busto, R.(1998).Hyperglycemic exacerbation of neuronal damage following forebrain ischemia: microglial, astrocytic and endothelial alterations.Acta Neuropathol,96,610-620.
  34. Loscher, W.,Lehmann, H.,Behl, B.,Seemann, D.,Teschendorf, H.J.,Hofmann, H.P.,Lubisch, W.,Hoger, T.,Lemaire, H.G.,Gross, G.(1999).A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.Eur. J. Neurosci.,11,250-262.
  35. Molina, P.E.,Tepper, P.G.,Yousef, K.A.,Abumrad, N.N.,Lang, C.H.(1994).Central NMDA enhances hepatic glucose output and noninsulin- mediated glucose uptake by a nonadrenergic mechanism.Brain Res.,634,41-48.
  36. Morse, J.K.,Davis, J.N.(1990).Regulation of ischemic hippocampal damage in the gerbil: adrenalectomy alters the rate of CA1 cell disappearance.Exp. Neurol.,110,86-92.
  37. Mulholland, P.J.,Self, R.L.,Harris, B.R.,Little, H.J.,Littleton, J.M.,Prendergast, M.A.(2005).Corticosterone increases damage and cytosolic calcium accumulation associated with ethanol withdrawal in rat hippocampal slice cultures.Alcohol Clin. Exp. Res.,29,871-881.
  38. Nadler, J.V.,Evenson, D.A.(1983).Use of excitatory amino acids to make axon-sparing lesions of hypothalamus.Methods Enzymol,103,393-400.
  39. Park, S.H.,Sim, Y.B.,Kim, C.H.,Lee, J.K.,Lee, J.H.,Suh, H.W.(2013).Role of alpha-CGRP in the regulation of neurotoxic responses induced by kainic acid in mice.Peptides,44,158-162.
  40. Ran, Y.H.,Wang, H.(2011).Iptakalim, an ATP-sensitive potassium channel opener, confers neuroprotection against cerebral ischemia/reperfusion injury in rats by protecting neurovascular unit cells.J. Zhejiang Univ. Sci. B.,12,835-845.
  41. Reynolds, I.J.,Hastings, T.G.(1995).Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.J. Neurosci.,15,3318-3327.
  42. Sapolsky, R.M.,Pulsinelli, W.A.(1985).Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications.Science,229,1397-1400.
  43. Shim, E.J.,Seo, Y.J.,Kwon, M.S.,Ham, Y.O.,Choi, O.S.,Lee, J.Y.,Choi, S.M.,Suh, H.W.(2007).The intracerebroventricular kainic acidinduced damage affects animal nociceptive behavior.Brain Res. Bull.,73,203-209.
  44. Siesjo, B.K.,Katsura, K.I.,Kristian, T.,Li, P.A.,Siesjo, P.(1996).Molecular mechanisms of acidosis-mediated damage..Acta Neurochir. Suppl.,66,8-14.
  45. Siesjo, B.K.,Zhao, Q.,Pahlmark, K.,Siesjo, P.,Katsura, K.,Folbergrova, J.(1995).Glutamate, calcium, and free radicals as mediators of ischemic brain damage.Ann. Thorac. Surg,59,1316-1320.
  46. Smith-Swintosky, V.L.,Pettigrew, L.C.,Sapolsky, R.M.,Phares, C.,Craddock, S.D.,Brooke, S.M.,Mattson, M.P.(1996).Metyrapone, an inhibitor of glucocorticoid production, reduces brain injury induced by focal and global ischemia and seizures.J. Cereb. Blood Flow Metab.,16,585-598.
  47. Stein, B.A.,Sapolsky, R.M.(1988).Chemical adrenalectomy reduces hippocampal damage induced by kainic acid.Brain Res.,473,175-180.
  48. Stephens, G.J.,Djamgoz, M.B.,Wilkin, G.P.(1993).A patch clamp study of excitatory amino acid effects on cortical astrocyte subtypes in culture..Recept. Channels,1,39-52.
  49. Sugiyama, H.,Ito, I.,Hirono, C.(1987).A new type of glutamate receptor linked to inositol phospholipid metabolism.Nature,325,531-533.
  50. Sztriha, L.,Joo, F.,Szerdahelyi, P.(1985).Accumulation of calcium in the rat hippocampus during kainic acid seizures.Brain Res.,360,51-57.
  51. Weise, J.,Engelhorn, T.,Dorfler, A.,Aker, S.,Bahr, M.,Hufnagel, A.(2005).Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: contribution of delayed neuronal cell death to seizure-induced neuronal injury.Neurobiol. Dis,18,582-590.
  52. Weiss, J.H.,Hartley, D.M.,Koh, J.Y.,Choi, D.W.(1993).AMPA receptor activation potentiates zinc neurotoxicity.Neuron,10,43-49.
  53. Zagulska-Szymczak, S.,Filipkowski, R.K.,Kaczmarek, L.(2001).Kainate-induced genes in the hippocampus: lessons from expression patterns.Neurochem. Int.,38,485-501.