题名

Involvement of Endothelial Nitric Oxide Synthase Activation in Midkine-Mediated Central Hypotensive Effects

DOI

10.4077/CJP.2017.BAG512

作者

Ching-Huang Lin;Jun-Yen Pan;Jung-Jui Chang;Hsin-Hung Chen;Pei-Wen Cheng;Ching-Jiunn Tseng

关键词

central cardiovascular regulation ; midkine ; nitric oxide synthases ; nucleus tractus solitarii

期刊名称

The Chinese Journal of Physiology

卷期/出版年月

60卷6期(2017 / 12 / 31)

页次

353 - 362

内容语文

英文

中文摘要

The growth factor midkine (MK) has been implicated in various biologic and pathologic events. It has been shown that the peripheral influence of MK on cardiovascular regulation is due to an influence on the renin-angiotensin system (RAS). The nucleus tractus solitarii (NTS) is the primary integrative center for cardiovascular control and other autonomic functions in the central nervous system. However, the signaling mechanisms involved in MK-mediated cardiovascular effects in the NTS remain unclear. In this study, we investigated whether the RAS and/or N-methyl-D-aspartate (NMDA) receptor-calmodulin-endothelial nitric oxide synthase (eNOS) signaling pathways were both involved in MK-mediated blood pressure (BP) regulation in the NTS of Wistar-Kyoto (WKY) rats. Intra-NTS microinjection and immunoblot analysis were used to evaluate the signal pathway. WKY rats were anesthetized with urethane. Unilateral microinjection of MK (600 fmol) into the NTS produced a dose-dependent decrease in BP and heart rate (HR). The depressor effects were observed before and after microinjection of the angiotensin-converting enzyme (ACE) inhibitor lisinopril (2.4 fmol), or the angiotensin receptor blockers (ARB) inhibitor valsartan (7.5 pmol). However, lisinopril and valsartan did not diminish the MK-mediated cardiovascular effects in the NTS. Microinjection of the NMDA receptor antagonist MK801 (1 nmol) or the NOS inhibitor N-nitro l-arginine methyl ester (L-NAME), (33 nmol), into the NTS attenuated the MK-induced hypotensive effects. Pretreatment with an eNOS inhibitor N5-iminoethyl-l-ornithine (L-NIO) (6 nmol) attenuated the MK-induced hypotensive effects. In this study, the data showed that MK might play a role in central cardiovascular regulation in the NTS. These results suggest that MK decreased BP and HR in the NTS probably acting via the NMDA receptor-calmodulin-eNOS signaling pathway.

主题分类 醫藥衛生 > 基礎醫學
参考文献
  1. Hong, L.Z.,Cheng, P.W.,Cheng, W.H.,Chen, S.R.,Wang, L.L.,Tseng, C.J.(2012).Involvement of NMDA receptors in nicotinemediated central control of hypotensive effects.Chin. J. Physiol.,55,337-345.
    連結:
  2. Badila, E.,Daraban, A.M.,Tintea, E.,Bartos, D.,Alexandru, N.,Georgescu, A.(2015).Midkine proteins in cardio-vascular disease. Where do we come from and where are we heading to?.Eur. J. Pharmacol.,762,464-471.
  3. Cheng, P.W.,Lu, P.J.,Chen, S.R.,Ho, W.Y.,Cheng, W.H.,Hong, L.Z.,Yeh, T.C.,Sun, G.C.,Wang, L.L.,Hsiao, M.,Tseng, C.J.(2011).Central nicotinic acetylcholine receptor involved in Ca2+ -calmodulin-endothelial nitric oxide synthase pathway modulated hypotensive effects.Br. J. Pharmacol.,163,1203-1213.
  4. Cheng, P.W.,Wu, A.T.,Lu, P.J.,Yang, Y.C.,Ho, W.Y.,Lin, H.C.,Hsiao, M.,Tseng, C.J.(2012).Central hypotensive effects of neuropeptide Y are modulated by endothelial nitric oxide synthase after activation by ribosomal protein S6 kinase.Br. J. Pharmacol.,167,1148-1160.
  5. Cheng, W.H.,Lu, P.J.,Ho, W.Y.,Tung, C.S.,Cheng, P.W.,Hsiao, M.,Tseng, C.J.(2010).Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of PTP.Circ. Res.,106,788-795.
  6. Cheng, W.H.,Lu, P.J.,Hsiao, M.,Hsiao, C.H.,Ho, W.Y.,Cheng, P.W.,Lin, C.T.,Hong, L.Z.,Tseng, C.J.(2012).Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT1 and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii.Br. J. Pharmacol.,166,2024-2035.
  7. Christopherson, K.S.,Hillier, B.J.,Lim, W. A.,Bredt, D.S.(1999).PSD-95 assembles a ternary complex with the N-methyl-Daspartic acid receptor and a bivalent neuronal NO synthase PDZ domain.J. Biol. Chem.,274,27467-27473.
  8. Ezquerra, L.,Herradon, G.,Nguyen, T.,Silos-Santiago, I.,Deuel, T.F.(2005).Midkine, a newly discovered regulator of the reninangiotensin pathway in mouse aorta: significance of the pleiotrophin/midkine developmental gene family in angiotensin II signaling.Biochem. Biophys. Res. Commun.,333,636-643.
  9. Gardoni, F.,Di Luca, M.(2006).New targets for pharmacological intervention in the glutamatergic synapse.Eur. J. Pharmacol.,545,2-10.
  10. Ho, W.Y.,Lu, P.J.,Hsiao, M.,Hwang, H.R.,Tseng, Y.C.,Yen, M.H.,Tseng, C.J.(2008).Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats.Circulation,117,773-780.
  11. Hobo, A.,Yuzawa, Y.,Kosugi, T.,Kato, N.,Asai, N.,Sato, W.,Maruyama, S.,Ito, Y.,Kobori, H.,Ikematsu, S.,Nishiyama, A.,Matsuo, S.,Kadomatsu, K.(2009).The growth factor midkine regulates the renin-angiotensin system in mice.J. Clin. Invest.,119,1616-1625.
  12. Horiba, M.,Kadomatsu, K.,Nakamura, E.,Muramatsu, H.,Ikematsu, S.,Sakuma, S.,Hayashi, K.,Yuzawa, Y.,Matsuo, S.,Kuzuya, M.,Kaname, T.,Hirai, M.,Saito, H.,Muramatsu, T.(2000).Neointima formation in a restenosis model is suppressed in midkine-deficient mice.J. Clin. Invest.,105,489-495.
  13. Horiba, M.,Kadomatsu, K.,Yasui, K.,Lee, J.K.,Takenaka, H.,Sumida, A.,Kamiya, K.,Chen, S.,Sakuma, S.,Muramatsu, T.,Kodama, I.(2006).Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction.Circulation,114,1713-1720.
  14. Huang, H.N.,Lu, P.J.,Lo, W.C.,Lin, C.H.,Hsiao, M.,Tseng, C.J.(2004).In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate.Circulation,110,2476-2483.
  15. Kadomatsu, K.(2010).Midkine regulation of the renin-angiotensin system.Curr. Hypertens. Rep.,12,74-79.
  16. Kadomatsu, K.,Muramatsu, T.(2004).Midkine and pleiotrophin in neural development and cancer.Cancer Lett.,204,127-143.
  17. Kennedy, M.B.(2000).Signal-processing machines at the postsynaptic density.Science,290,750-754.
  18. Lin, B.,Arai, A.C.,Lynch, G.,Gall, C.M.(2003).Integrins regulate NMDA receptor-mediated synaptic currents.J. Neurophysiol.,89,2874-2878.
  19. Lin, C.H.,Lo, W.C.,Hsiao, M.,Tseng, C.J.(2003).Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats.Hypertension,42,380-385.
  20. Lo, W.J.,Liu, H.W.,Lin, H.C.,Ger, L.P.,Tung, C.S.,Tseng, C.J.(1996).Modulatory effects of nitric oxide on baroreflex activation in the brainstem nuclei of rats.Chinese J. Physiol.,39,57-62.
  21. Maeda, N.,Ichihara-Tanaka, K.,Kimura, T.,Kadomatsu, K.,Muramatsu, T.,Noda, M.(1999).A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta.J. Biol. Chem.,274,12474-12479.
  22. Muramatsu, H.,Zou, K.,Sakaguchi, N.,Ikematsu, S.,Sakuma, S.,Muramatsu, T.(2000).LDL receptor-related protein as a component of the midkine receptor.Biochem. Biophys. Res. Commun.,270,936-941.
  23. Muramatsu, H.,Zou, P.,Suzuki, H.,Oda, Y.,Chen, G.Y.,Sakaguchi, N.,Sakuma, S.,Maeda, N.,Noda, M.,Takada, Y.,Muramatsu, T.(2004).Alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor.J. Cell Sci.,117,5405-5415.
  24. Muramatsu, T.(2002).Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis.J. Biochem.,132,359-371.
  25. Muramatsu, T.(2010).Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases.Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci.,86,410-425.
  26. Sato, Y.,Sato, W.,Maruyama, S.,Wilcox, C.S.,Falck, J.R.,Masuda, T.,Kosugi, T.,Kojima, H.,Maeda, K.,Furuhashi, K.,Ando, M.,Imai, E.,Matsuo, S.,Kadomatsu, K.(2015).Midkine regulates BP through cytochrome P450-derived eicosanoids.J. Am. Soc. Nephrol.,26,1806-1815.
  27. Shi, Y.,Ethell, I.M.(2006).Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin- dependent protein kinase II-mediated actin reorganization.J. Neurosci.,26,1813-1822.
  28. Sumida, A.,Horiba, M.,Ishiguro, H.,Takenaka, H.,Ueda, N.,Ooboshi, H.,Opthof, T.,Kadomatsu, K.,Kodama, I.(2010).Midkine gene transfer after myocardial infarction in rats prevents remodeling and ameliorates cardiac dysfunction.Cardiovasc. Res.,86,113-121.
  29. Tseng, C.J.,Chou, L.L.,Ger, L.P.,Tung, C.S.(1994).Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats.J. Pharmacol. Exp. Ther.,268,558-564.
  30. Tseng, C.J.,Ger, L.P.,Lin, H.C.,Tung, C.S.(1995).Attenuated cardiovascular response to adenosine in the brain stem nuclei of spontaneously hypertensive rats.Hypertension,25,278-282.
  31. Tseng, C.J.,Liu, H.Y.,Lin, H.C.,Ger, L.P.,Tung, C.S.,Yen, M.H.(1996).Cardiovascular effects of nitric oxide in the brain stem nuclei of rats.Hypertension,27,36-42.
  32. Wang, Y.T.,Yu, X.M.,Salter, M.W.(1996).Ca2+-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase.Proc. Natl. Acad. Sci. USA.,93,1721-1725.
  33. Xu, C.,Zhu, S.,Wu, M.,Han, W.,Yu, Y.(2014).Functional receptors and intracellular signal pathways of midkine (MK) and pleiotrophin (PTN).Biol. Pharm. Bull.,37,511-520.