题名

中文情感語意分析套件CSentiPackage發展與應用

并列篇名

Introduction to CSentiPackage: Tools for Chinese Sentiment Analysis

DOI

10.6245/JLIS.201804_44(1).0002

作者

陳韋帆(Wei-Fan Chen);古倫維(Lun-Wei Ku)

关键词

中文處理工具 ; 意見分析 ; 情感分析 ; 社群媒體資料分析 ; Chinese Text Processing ; Opinion Mining ; Sentiment Analysis ; Social Media Analytics

期刊名称

圖書館學與資訊科學

卷期/出版年月

44卷1期(2018 / 04 / 01)

页次

24 - 41

内容语文

繁體中文;英文

中文摘要

近年來,意見與情感分析技術漸漸為大家所注意且因網路環境之餘意見發表的便利性,文本意見與情感分析技術的需求與應用也快速增加,然而在中文上,並沒有公開可利用的意見與情感分析工具。本文介紹一個供研究使用免費且公開的中文情感語意分析套件:CSentiPackage,套件中包含多個可以用於中文情感語意分析研究所需要的各式工具,例如中文意見、構詞詞典、中文意見樹庫、意見挖掘計分工具,及深度社群立場分析模型等。本文將詳細介紹各個工具的內容。欲取得CSentiPackage套件及其使用方法,可從網址http://www.lunweiku.com/之Lab Homepage分頁進入申請下載。

英文摘要

Sentiment analysis determines the polarities and strength of the sentiment‐bearing expressions, and it has been an important and attractive research area. In the past decade, resources and tools have been developed for sentiment analysis in order to provide subsequent vital applications, such as product reviews, reputation management, call center robots, automatic public survey, etc. However, most of these resources are for the English language. Being the key to the understanding of business and government issues, sentiment analysis resources and tools are required for other major languages, e.g., Chinese.To overcome this obstacle, we introduce CSentiPackage, where resources for retrieving sentiment from texts in the Chinese language, are provided. The related sentiment analysis technologies and datasets are described to give the readers the opportunities to use resources and tools to process Chinese sentiment texts from the very basic to the advanced, i.e., applying sentiment dictionaries, obtaining sentiment scores, and analyzing stance of social media posts using the deep learning model. The introduced resources and tools in this paper include NTUSD, ANTUSD, the Chinese Morphological Dataset, the Chinese Opinion Treebank, CopeOpi, and UTCNN. These resources are all available at http://academiasinicanlplab.github.io/ and they are free for the research purpose.

主题分类 人文學 > 圖書資訊學
参考文献
  1. Chen, W. F.,Ku, L. W.(2016).UTCNN: A Deep Learning Model of Stance Classification on Social Media Text.COLING
  2. Chen, W. F.,Ku, L. W.,Lee, Y. H.(2015).Mining Supportive and Unsupportive Evidence from Facebook Using Anti-Reconstruction of the Nuclear Power Plant as an Example.AAAI Spring Symposium on Socio-Technical Behavior Mining: From Data to Decisions
  3. Huang, T. H.,Ku, L. W.,Chen, H. H.(2010).Predicting Morphological Types of Chinese Bi-Character Words by Machine Learning Approaches.Proceedings of LREC
  4. Ku, L. W.,Ho, H. W.,Chen, H. H.(2009).Opinion Mining and Relationship Discovery Using CopeOpi Opinion Analysis System.Journal of the American Society for Information Science and Technology,60(7),1486-1503.
  5. Ku、 L. W.,Huang, Ting-Hao,Chen, H. H.(2010).Construction of a Chinese Opinion Treebank.Proceedings of LREC
  6. Ku, L. W.,Liang, Y. T.,Chen, H. H.(2006).Opinion Extraction, Summarization and Tracking in News and Blog Corpora.AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs
  7. Wang, S. M.,Ku, L. W.(2016).ANTUSD: A Large Chinese Sentiment Dictionary.Proceedings of LREC
被引用次数
  1. 劉慧雯,段人鳯,邱淑怡(2022)。以社群媒體語言建構深度學習模型:以「校正回歸」為例。中文計算語言學期刊,27(1),153-179。
  2. 魏裕珍,洪慧玲,洪敬傑(2022)。共同基金的媒體聲譽對其績效表現之影響。證券市場發展季刊,34(3),115-163。
  3. 顏瑞宏,黃琝戩,傅文成(2021)。以資料科學方法輔助民意趨勢分析:戰略及戰爭風險感知的網路民意研究。新聞學研究,149,1-49。
  4. (2021)。臺灣空污新聞在網路中的擴散、集體守門和議題設定。中華傳播學刊,39,147-193。