题名

Leaf surface secretion of flavonoids in Myricaria bracteata and M. longifolia (Tamaricaceae)

DOI

10.6165/tai.2022.67.413

作者

Evgeniya A. KARPOVA;Alexander A. KRASNIKOV;Elena M. LYAKH;Alexander A. CHERNONOSOV

关键词

Myricaria ; Tamaricaceae ; leaf exudate ; salt glands ; flavonoids

期刊名称

TAIWANIA

卷期/出版年月

67卷3期(2022 / 09 / 01)

页次

413 - 421

内容语文

英文

中文摘要

Flavonoids of the salt glands and tissues of Myricaria bracteata and Myricaria longifolia were studied by histochemical assays and chromatographic analysis. Histochemical staining indicated flavonoid accumulation in the salt glands, within vascular bundles, and in subepidermal parenchyma layers of the leaves. Exudate flavonoids of the leaves were characterized for the first time. Phenolic profiles of these species proved to be similar and showed high levels of ellagic acid and total flavonoids, including hyperoside, isoquercitrin, astragalin, avicularin, isorhamnetin 3-O-rutinoside, quercetin, naringenin, and luteolin. Astragalin and hyperoside are major phenolic compounds in the leaves. The latter were found to constitute ~0.2-0.3% of total phenolics of the leaves; meanwhile, exudate flavonoids make up ~0.5% of total flavonoids. The high similarity of phenolic composition between the whole-leaf extracts and the exudates indicates the homogeneous origin of these compounds. The observed tissue distribution of flavonoids and their presence in the salt glands confirm the role of these glands in leaf surface secretion of flavonoids.

主题分类 生物農學 > 植物學
生物農學 > 動物學
生物農學 > 生物環境與多樣性
参考文献
  1. Agati, G., P. Matteini, A. Goti and M. Tattini. 2007. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174(1): 77–89.
    連結:
  2. Brent, L.C., J.L. Reiner, R.R. Dickerson and L.C. Sander. 2014. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry. Anal. Chem. 86(15): 7328–7336.
    連結:
  3. Brilli, F., S. Fares, A. Ghirardo, P. de Visser, V. Calatayud, A. Muñoz, I. Annesi-Maesano, F. Sebastiani, A. Alivernini, V. Varriale and F. Menghini. 2018. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 23(6): 507–512.
    連結:
  4. Calquist, S. 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Bot. J. Linn. Soc. 164(4): 342–393.
    連結:
  5. Chernonosov, A.A., E.A. Karpova and E.M. Lyakh. 2017. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. Farmacogn. 27(5): 576–579.
    連結:
  6. Cowan, M.M. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev. 12(4): 564–582.
    連結:
  7. Donaldson, L. and N. Williams. 2018. Imaging and Spectroscopy of Natural Fluorophores in Pine Needles. Plants (Basel). 7(1): 10.
    連結:
  8. Dörken, V.M., R.F. Parsons and A.T. Marshall. 2017. Studies on the foliage of Myricaria germanica (Tamaricaceae) and their evolutionary and ecological implications. Trees 31(3): 997–1013.
    連結:
  9. Greenaway, W. 1992. Compositions of Bud and Leaf Exudates of Some Populus Species Compared. Zeitschrift für Naturforschung C. 47(5-6): 329–334.
    連結:
  10. Karker, M., N. De Tommasi, A. Smaoui, C. Abdelly, R. Ksouri and A. Braca. 2016. New sulphated flavonoids from tamarix africana and biological activities of its polar extract. Planta Med. 82(15): 1374–1380.
    連結:
  11. Karpova, E.A., A.A. Krasnikov, T.D. Fershalova, E.V. Baikova, A.A. Petruk and Y.L. Yakimova. 2019. Phenolic compounds and antimicrobial properties of Begonia grandis Dryand. subsp. grandis leaves. Bot. Pac. 8: 51–61.
    連結:
  12. Kuster, V.C., L.C. Da Silva and R.M.S.A. Meira. 2020. Anatomical and histochemical evidence of leaf salt glands in Jacquinia armillaris Jacq. (Primulaceae). Flora 262: 151493.
    連結:
  13. Li, Z., P. Xue, H. Xie, X. Li and M. Xie. 2010. Chemical constituents from Myricaria alopecuroides. Zhongguo Zhong Yao Za Zhi 35(7): 865–868. (In Chinese)
    連結:
  14. Liu, J.-B., Y.-S. Ding, Y. Zhang, J.-B. Chen, B.-S. Cui, J.-Y. Bai, M.-B. Lin, Q. Hou, P.-C. Zhang and S. Li. 2015. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata. J. Nat. Prod. 78(5): 1015–1025.
    連結:
  15. Matias, L.J., M.O. Mercadante-Simões, V.A. Royo, L.M. Ribeiro, A.C. Santos and J.M. Fonseca. 2016. Structure and histochemistry of medicinal species of Solanum. Rev. Bras. Farmacogn. 26(2): 147–160.
    連結:
  16. Muravnik, L.E., O.V. Kostina and A.L. Shavarda. 2016. Glandular trichomes of Tussilago Farfara (Senecioneae, Asteraceae). Planta 244(3): 737–752.
    連結:
  17. Muravnik, L.E. and A.L. Shavarda. 2012. Leaf glandular trichomes in Empetrum nigrum. Morphology, histochemistry, ultrastructure and secondary metabolites. Nord. J. Bot. 30(4): 470–481.
    連結:
  18. Obmann, A., B. Mraz, B. Kubasa, M. Zehl, C. Kletter and S. Glasl. 2010. Phytochemical profiling of the Mongolian medicinal plant Myricaria longifolia Ehrenb. Planta Med. 76(12): 138.
    連結:
  19. Oliveira Ribeiro, A.D., S.L. Goulart, F.A. Mori and A.H. Fonseca Castro. 2014. Tree Crown Variation and Seasonal in the Phenolic Compounds Content of Stryphnodendron adstringens (Mart) Coville Leaves. AJPS. 5(19): 2904–2912.
    連結:
  20. Parmar, V.S., K.S. Bisht, S.K. Sharma, R. Jain, P. Taneja, S. Singh, O. Simonsen and P.M. Boll. 1994. Highly oxygenated bioactive flavones from Tamarix. Phytochemistry 36(2): 507–511.
    連結:
  21. Ranocha, P., M. Chabannes, S. Chamayou, S. Danoun, A. Jauneau, A.-M. Boudet and D. Goffner. 2002. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129(1): 145–155.
    連結:
  22. Silva, W.L.D., M. F.A. Cruz, A.A. Fortunato and F.Á. Rodrigues. 2015. Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Sci. Agric. (Piracicaba, Braz.). 72(4): 322–327.
    連結:
  23. Soukupová, J., M. Cvikrová, J. Albrechtová, B.N. Rock and J. Eder. 2000. Histochemical and biochemical approaches to the study of phenolic compounds and peroxidases in needles of Norway spruce (Picea abies). New Phytol. 146(3): 403–414.
    連結:
  24. Tattini, M., E. Gravono, P. Pinelli, N. Mulinacci and A. Romani. 2000. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol. 148(1): 69–77.
    連結:
  25. Tattini, M., P. Matteini, E. Saracini, M.L. Traversi, C. Giordano and G. Agati. 2007. Morphology and biochemistry of non-glandular trichomes in Cistus salvifolius L. leaves growing in extreme habitats of the Mediterranean basin. Plant Biol. (Stuttg). 9(3): 411–419.
    連結:
  26. Turner, T.R., E.K. James and P.S. Poole. 2013. The plant microbiome. Genome Biol. 14(6): 209.
    連結:
  27. Usta, C., S. Ozdemir, M. Schiariti and P.E. Puddu. 2013. The pharmacological use of ellagic acid-rich pomegranate fruit. Int J Food Sci Nutr. 64(7): 907–913.
    連結:
  28. Valant-Vetschera, K. M. and B. Brem. 2006. Chemodiversity of exudate flavonoids, as highlighted by selected publications of Eckhard Wollenweber. Nat. Prod. Commun. 1(11): 921–926.
    連結:
  29. Valant-Vetschera, K. M., J. N. Roitman and E. Wollenweber. 2003. Chemodiversity of exudate flavonoids in some members of the Lamiaceae. Biochem. Syst. Ecol. 31(11): 1279–1289.
    連結:
  30. Valkama, E., J.-P. Salminen, J. Koricheva and K. Pihlaja. 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann. Bot. 91(6): 643–655.
    連結:
  31. Valkama, E., J.-P. Salminen, J. Koricheva and K. Pihlaja. 2004. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann. Bot. 94(2): 233–242.
    連結:
  32. Wang, Y.-Z., C.-Y. Guo, H.-G. Zhong, W.-N. Zhang, D.-L. Wang, X. Wang and F.-H. Dong. 2008. In vivo effects of Pain Relieving Plaster on closed soft tissue injury in rabbit ears. BMC Complement Altern. Med. 8(1): 51.
    連結:
  33. Wollenweber, E., M. Christ, R.H. Dunstan, J.N. Roitman and J.F. Stevens. 2005a. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae).Zeitschrift für Naturforschung C 60(9-10): 671–678.
    連結:
  34. Wollenweber, E., M. Dörsam, M. Dörr, J.N. Roitman and K.M. Valant-Vetschera. 2005b. Chemodiversity of surface flavonoids in Solanaceae. Zeitschrift für Naturforschung C 60(9-10): 661–670.
    連結:
  35. Zhang, Y., Y. Yuan, B. Cui and S. Li. 2011. Study on chemical constituents from ethyl acetate extract of Myricaria bracteata. Zhongguo Zhong Yao Za Zhi 36(8): 1019–1023. (In Chinese)
    連結:
  36. Zhao, D.B., X.H. Liu, S.Y. Cui, T. Wang and H.Q. Wang. 2005. Separation and Determination of Six Active Components in Two Myricaria Plants by Capillary Chromatography. Chromatographia 61(11-12): 643–646.
    連結:
  37. ICH. 2005. ICH Harmonised Tripartite Guideline - Validation of analytical procedures: text and methodology Q2(R1). (http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf). Accessed 20 February 2021.
  38. Iwashina, T. 2013. Flavonoid Properties of five Families newly Incorporated into the Order Caryophyllales (Review). Bull. Natl. Mus. Nat. Sci., Ser. B. 39: 25–51.
  39. Lyakh, E.M. 2006. Genus Myricaria Desv. In: Peškova, G. A., et al., (eds.). Science Publishers, pp 101–103: Enfield, NH.
  40. Nikolova, M., R. Gevrenova and S. Ivancheva. 2003. External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae). Acta Pharm. 53: 145–149.
  41. Zhou, R., T. Wang and X.-Z. Du. 2006. Studies on chemical constituents in herb of Myricaria bracteata. Zhongguo Zhong Yao Za Zhi 31(6): 474–476. (In Chinese)