题名

A statistical method to generate high-resolution climate datasets for modeling plant distribution range and range shifts under climate change in mountainous areas

DOI

10.6165/tai.2023.68.8

作者

Chi-Cheng LIAO;Huan-Yu LIN;Su-Wei FAN

关键词

Climate change ; high-resolution climate dataset ; Random Forests ; species distribution model ; Taiwan

期刊名称

TAIWANIA

卷期/出版年月

68卷1期(2023 / 03 / 01)

页次

8 - 22+s1-2

内容语文

英文

中文摘要

This study aims to develop a statistical method to generate high-resolution historical and future climate datasets for modeling plant distributions in mountainous area. Two climate datasets that were from Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP) and meteorological stations were used to construct two historical climate datasets with 50 × 50 m^2 spatial resolution, respectively. The two historical climate datasets presented similar temperature pattern but distinct precipitation patterns in northern Taiwan (NTWN). Random Forests (RF) had predicted similar distribution range of natural grassland along mountain ridge when RF were applied by the two climate datasets, whereas RF had predicted restricted distribution range when it was applied by true absence data. The two historical climate datasets were added to the relative changes of climate variables representing four future climate scenarios. RF method based on the future climate datasets predicted habitat loss of natural grassland at the mid and end of this century, regardless of climate datasets and four warming scenarios. Due to the altitudinal limits of NTWN, there is almost no chance for natural grassland to track their climatic requirements toward higher elevations under climate change. High-resolution historical and future climate datasets generated by the statistical method were useful for species distribution model to project species potential distribution range in mountainous area and were available to examine species range shifts under climate change. Model performances based on the high-resolution climate dataset may have better expressed the climatic requirements and exact climatic niches of species in mountainous areas.

主题分类 生物農學 > 植物學
生物農學 > 動物學
生物農學 > 生物環境與多樣性
参考文献
  1. Fridley, J. D. 2009. Downscaling climate over complex terrain: high finescale (< 1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J. Appl. Meteorol. Climatol. 48(5): 1033‒1049.
    連結:
  2. Godsoe, W., Murray, R., Plank, M. J. 2015. Information on biotic interactions improves transferability of distribution models. Am. Nat. 185(2): 281‒290.
    連結:
  3. Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., Hylander, K. 2018. Monthly microclimate models in a managed boreal forest landscape. Agric. For. Meteorol. 250: 147‒158.
    連結:
  4. Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T. 2007. What matters for predicting the occurrences of trees: techniques, data, or species characteristics? Ecol. Monogr. 77(4): 615‒630.
    連結:
  5. Hamann, A., Wang, T. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87(11): 2773‒2786.
    連結:
  6. Hao, T., Elith, J., Guillera‐Arroita, G., Lahoz‐Monfort, J. J. J. D., Distributions. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. 25(5): 839‒852.
    連結:
  7. Heikkinen, R. K., Marmion, M., Luoto, M. 2012. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35(3): 276‒288.
    連結:
  8. Hu, X.-G., Wang, T., Liu, S.-S., Jiao, S.-Q., Jia, K.-H., Zhou, S.-S., Jin, Y., Li, Y., El-Kassaby, Y.A., Mao, J.-F. 2017. Predicting future seed sourcing of Platycladus orientalis (L.) for future climates using climate niche models. Forests 8(12): 471.
    連結:
  9. Iturbide, M., Bedia, J., Gutiérrez, J. M. 2018. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166: 19‒29.
    連結:
  10. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2017. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4(1): 170122.
    連結:
  11. Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M. 2015. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96(8): 1333‒1349.
    連結:
  12. Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A.G.T., Hopper, S.D., Franklin, S.E. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21(4): 393‒404.
    連結:
  13. Khoshgoftaar, T. M., Golawala, M., Van Hulse, J. 2007. An empirical study of learning from imbalanced data using random forest. 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007): 310–317.
    連結:
  14. Korner, C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4): 445–459.
    連結:
  15. Korner, C., Paulsen, J. 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31(5): 713‒732.
    連結:
  16. Lannuzel, G., Balmot, J., Dubos, N., Thibault, M., Fogliani, B. 2021. High-resolution topographic variables accurately predict the distribution of rare plant species for conservation area selection in a narrow-endemism hotspot in New Caledonia. Biodivers. Conserv. 30(4): 963‒990.
    連結:
  17. Lenoir, J., Hattab, T., Pierre, G. 2017. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40(2): 253‒266.
    連結:
  18. Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., Hsieh, C.-F., Bruelheide, H. 2013. Classification of Taiwan forest vegetation. Appl. Veg. Sci. 16(4): 698‒719.
    連結:
  19. Liao, C. C., Chang, C. R., Hsu, M. T., Poo, W. K. 2014. Experimental evaluation of the sustainability of dwarf bamboo (Pseudosasa usawai) sprout-harvesting practices in Yangminshan National Park, Taiwan. Environ. Manage. 54(2): 320‒330.
    連結:
  20. Liao, C. C., Chen, Y. H. 2021. Improving performance of species distribution model in mountainous areas with complex topography. Ecol. Res. 36(4): 648‒662.
    連結:
  21. Liao, C.C., Chen, Y.H. 2022. The effects of true and pseudo-absence data on the performance of species distribution models at landscape scale. Taiwania 67(1): 9‒20.
    連結:
  22. Liao, C.C., Kuo, S.C., Chang, C.R. 2012. Forest distribution on small isolated hills and implications on woody plant distribution under threats of global warming. Taiwania 57(3): 242‒250.
    連結:
  23. Lin, H. Y., Hu, J. M., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T. 2018. A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania 63(3): 251‒266.
    連結:
  24. Lin, H. Y., Li, C. F., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T., Hu, J. M. 2020. Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Appl. Veg. Sci. 23(2): 239‒253.
    連結:
  25. Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., Chen, W.-B. 2022. The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A decade of climate research. Water 14(3): 358.
    連結:
  26. Liu, B., Liang, E., Zhu, L. 2011. Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountain, Southeastern Tibetan Plateau. Mt. Res. Dev. 31(1): 45‒53.
    連結:
  27. Lobo, J. M., Jiménez‐Valverde, A., Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2): 145‒151.
    連結:
  28. Maria, B., Udo, S. 2017. Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol. Modell. 359, 92‒102.
    連結:
  29. Meineri, E., Hylander, K. 2017. Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40(8): 1003‒1013.
    連結:
  30. Mi, C., Huettmann, F., Guo, Y., Han, X., Wen, L. 2017. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ, 5, e2849.
    連結:
  31. Miles, L., Grainger, A., Phillips, O. 2004. The impact of global climate change on tropical forest biodiversity in Amazonia. Glob. Ecol. Biogeogr. 13(6): 553‒565.
    連結:
  32. Mohapatra, J., Singh, C.P., Hamid, M., Verma, A., Semwal, S.C., Gajmer, B., Khuroo, A.A., Kumar, A., Nautiyal, M.C., Sharma, N., Pandya, H.A. 2019. Modelling Betula utilis distribution in response to climate-warming scenarios in Hindu-Kush Himalaya using random forest. Biodivers. Conserv. 28(8-9): 2295‒2317.
    連結:
  33. Orsenigo, S., Montagnani, C., Fenu, G., Gargano, D., Peruzzi, L., Abeli, T., Alessandrini, A., Bacchetta, G., Bartolucci, F., Bovio, M., Brullo, C., Brullo, S., Carta, A., Castello, M., Cogoni, D., Conti, F., Domina, G., Foggi, B., Gennai, M., Gigante, D., Iberite, M., Lasen, C., Magrini, S., Perrino, E.V., Prosser, F., Santangelo, A., Selvaggi, A., Stinca, A., Vagge, I., Villani, M., Wagensommer, R.P., Wilhalm, T., Tartaglini, N., Duprè, E., Blasi, C., Rossi, G. 2018. Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol. Conserv. 224: 213‒222.
    連結:
  34. Pearse, I.S., Hipp, A.L. 2012. Global patterns of leaf defenses in oak species. Evolution 66(7): 2272‒2286.
    連結:
  35. Qian, H. 2017. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America. J. Plant Ecol. 11(3): 394‒400.
    連結:
  36. Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., Papeş, M. 2019. An evaluation of transferability of ecological niche models. Ecography 42(3): 521‒534.
    連結:
  37. Schorr, G., Holstein, N., Pearman, P., Guisan, A., Kadereit, J. 2012. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula. Ecol. Evol. 2(6): 1260‒1277.
    連結:
  38. Smith, W. K., Germino, M. J., Johnson, D. M., Reinhardt, K. 2009. The altitude of alpine treeline: A Bellwether of climate change effects. Bot. Rev. 75(2): 163‒190.
    連結:
  39. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A. T., Phillips, O.L., Williams, S. E. 2004. Extinction risk from climate change. Nature 427(6970): 145‒148.
    連結:
  40. Vanneste, T., Michelsen, O., Graae, B. J., Kyrkjeeide, M. O., Holien, H., Hassel, K., Lindmo, S., Kapás, R.E., De Frenne, P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32(4): 579‒593.
    連結:
  41. Vanwalleghem, T., Meentemeyer, R. 2009. Predicting forest microclimate in heterogeneous landscapes. Ecosystems 12(7): 1158‒1172.
    連結:
  42. Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B Biol Sci. 365(1549):2019‒2024.
    連結:
  43. Wang, T., Hamann, A., Spittlehouse, D., Carroll, C. 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One 11(6): e0156720.
    連結:
  44. Williams, J. N., Seo, C., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., Schwartz, M. W. 2009. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15(4): 565‒576.
    連結:
  45. Xu, Y., Huang, Y., Zhao, H., Yang, M., Zhuang, Y., Ye, X. 2021. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests 12(4): 429.
    連結:
  46. Zhao, X., Meng, H., Wang, W., Yan, B. 2016. Prediction of the distribution of alpine tree species under climate change scenarios: Larix chinensis in Taibai Mountain (China). Pol. J. Ecol. 64(2): 200‒212.
    連結:
  47. Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X., Liu, Y. 2018. Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob. Ecol. Conserv. 16: e00501.
    連結:
  48. Hsieh, C. F., Chao, W. C., Liao, C. C., Yang, K. C., Hsieh, T. H. 1997. Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat. Hist. Res. 4, 1‒16.
  49. IPCC. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  50. Liaw, A., Wiener, M. 2002. Classification and regression by random. Forest. R news 2(3): 18‒22.
  51. Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17: 57‒73.
  52. Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., Thuiller, C. W. 2016. Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework.
  53. Weng, S., Yang, C. 2012. The construction of monthly rainfall and temperature datasets with 1km gridded resolution over Taiwan area (1960‒2009) and its application to climate projection in the near future (2015‒2039). Atmos. Sci. 40(4): 349‒369.