参考文献
|
-
Fridley, J. D. 2009. Downscaling climate over complex terrain: high finescale (< 1000 m) spatial variation of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). J. Appl. Meteorol. Climatol. 48(5): 1033‒1049.
連結:
-
Godsoe, W., Murray, R., Plank, M. J. 2015. Information on biotic interactions improves transferability of distribution models. Am. Nat. 185(2): 281‒290.
連結:
-
Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., Hylander, K. 2018. Monthly microclimate models in a managed boreal forest landscape. Agric. For. Meteorol. 250: 147‒158.
連結:
-
Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T. 2007. What matters for predicting the occurrences of trees: techniques, data, or species characteristics? Ecol. Monogr. 77(4): 615‒630.
連結:
-
Hamann, A., Wang, T. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87(11): 2773‒2786.
連結:
-
Hao, T., Elith, J., Guillera‐Arroita, G., Lahoz‐Monfort, J. J. J. D., Distributions. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. 25(5): 839‒852.
連結:
-
Heikkinen, R. K., Marmion, M., Luoto, M. 2012. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35(3): 276‒288.
連結:
-
Hu, X.-G., Wang, T., Liu, S.-S., Jiao, S.-Q., Jia, K.-H., Zhou, S.-S., Jin, Y., Li, Y., El-Kassaby, Y.A., Mao, J.-F. 2017. Predicting future seed sourcing of Platycladus orientalis (L.) for future climates using climate niche models. Forests 8(12): 471.
連結:
-
Iturbide, M., Bedia, J., Gutiérrez, J. M. 2018. Background sampling and transferability of species distribution model ensembles under climate change. Glob. Planet. Change 166: 19‒29.
連結:
-
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N.E., Linder, H.P., Kessler, M. 2017. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4(1): 170122.
連結:
-
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M. 2015. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96(8): 1333‒1349.
連結:
-
Keppel, G., Van Niel, K. P., Wardell‐Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A.G.T., Hopper, S.D., Franklin, S.E. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21(4): 393‒404.
連結:
-
Khoshgoftaar, T. M., Golawala, M., Van Hulse, J. 2007. An empirical study of learning from imbalanced data using random forest. 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007): 310–317.
連結:
-
Korner, C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4): 445–459.
連結:
-
Korner, C., Paulsen, J. 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31(5): 713‒732.
連結:
-
Lannuzel, G., Balmot, J., Dubos, N., Thibault, M., Fogliani, B. 2021. High-resolution topographic variables accurately predict the distribution of rare plant species for conservation area selection in a narrow-endemism hotspot in New Caledonia. Biodivers. Conserv. 30(4): 963‒990.
連結:
-
Lenoir, J., Hattab, T., Pierre, G. 2017. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40(2): 253‒266.
連結:
-
Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., Hsieh, C.-F., Bruelheide, H. 2013. Classification of Taiwan forest vegetation. Appl. Veg. Sci. 16(4): 698‒719.
連結:
-
Liao, C. C., Chang, C. R., Hsu, M. T., Poo, W. K. 2014. Experimental evaluation of the sustainability of dwarf bamboo (Pseudosasa usawai) sprout-harvesting practices in Yangminshan National Park, Taiwan. Environ. Manage. 54(2): 320‒330.
連結:
-
Liao, C. C., Chen, Y. H. 2021. Improving performance of species distribution model in mountainous areas with complex topography. Ecol. Res. 36(4): 648‒662.
連結:
-
Liao, C.C., Chen, Y.H. 2022. The effects of true and pseudo-absence data on the performance of species distribution models at landscape scale. Taiwania 67(1): 9‒20.
連結:
-
Liao, C.C., Kuo, S.C., Chang, C.R. 2012. Forest distribution on small isolated hills and implications on woody plant distribution under threats of global warming. Taiwania 57(3): 242‒250.
連結:
-
Lin, H. Y., Hu, J. M., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T. 2018. A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania 63(3): 251‒266.
連結:
-
Lin, H. Y., Li, C. F., Chen, T. Y., Hsieh, C. F., Wang, G., Wang, T., Hu, J. M. 2020. Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Appl. Veg. Sci. 23(2): 239‒253.
連結:
-
Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., Chen, W.-B. 2022. The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A decade of climate research. Water 14(3): 358.
連結:
-
Liu, B., Liang, E., Zhu, L. 2011. Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountain, Southeastern Tibetan Plateau. Mt. Res. Dev. 31(1): 45‒53.
連結:
-
Lobo, J. M., Jiménez‐Valverde, A., Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2): 145‒151.
連結:
-
Maria, B., Udo, S. 2017. Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol. Modell. 359, 92‒102.
連結:
-
Meineri, E., Hylander, K. 2017. Fine‐grain, large‐domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40(8): 1003‒1013.
連結:
-
Mi, C., Huettmann, F., Guo, Y., Han, X., Wen, L. 2017. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ, 5, e2849.
連結:
-
Miles, L., Grainger, A., Phillips, O. 2004. The impact of global climate change on tropical forest biodiversity in Amazonia. Glob. Ecol. Biogeogr. 13(6): 553‒565.
連結:
-
Mohapatra, J., Singh, C.P., Hamid, M., Verma, A., Semwal, S.C., Gajmer, B., Khuroo, A.A., Kumar, A., Nautiyal, M.C., Sharma, N., Pandya, H.A. 2019. Modelling Betula utilis distribution in response to climate-warming scenarios in Hindu-Kush Himalaya using random forest. Biodivers. Conserv. 28(8-9): 2295‒2317.
連結:
-
Orsenigo, S., Montagnani, C., Fenu, G., Gargano, D., Peruzzi, L., Abeli, T., Alessandrini, A., Bacchetta, G., Bartolucci, F., Bovio, M., Brullo, C., Brullo, S., Carta, A., Castello, M., Cogoni, D., Conti, F., Domina, G., Foggi, B., Gennai, M., Gigante, D., Iberite, M., Lasen, C., Magrini, S., Perrino, E.V., Prosser, F., Santangelo, A., Selvaggi, A., Stinca, A., Vagge, I., Villani, M., Wagensommer, R.P., Wilhalm, T., Tartaglini, N., Duprè, E., Blasi, C., Rossi, G. 2018. Red Listing plants under full national responsibility: extinction risk and threats in the vascular flora endemic to Italy. Biol. Conserv. 224: 213‒222.
連結:
-
Pearse, I.S., Hipp, A.L. 2012. Global patterns of leaf defenses in oak species. Evolution 66(7): 2272‒2286.
連結:
-
Qian, H. 2017. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America. J. Plant Ecol. 11(3): 394‒400.
連結:
-
Qiao, H., Feng, X., Escobar, L. E., Peterson, A. T., Soberón, J., Zhu, G., Papeş, M. 2019. An evaluation of transferability of ecological niche models. Ecography 42(3): 521‒534.
連結:
-
Schorr, G., Holstein, N., Pearman, P., Guisan, A., Kadereit, J. 2012. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula. Ecol. Evol. 2(6): 1260‒1277.
連結:
-
Smith, W. K., Germino, M. J., Johnson, D. M., Reinhardt, K. 2009. The altitude of alpine treeline: A Bellwether of climate change effects. Bot. Rev. 75(2): 163‒190.
連結:
-
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A. T., Phillips, O.L., Williams, S. E. 2004. Extinction risk from climate change. Nature 427(6970): 145‒148.
連結:
-
Vanneste, T., Michelsen, O., Graae, B. J., Kyrkjeeide, M. O., Holien, H., Hassel, K., Lindmo, S., Kapás, R.E., De Frenne, P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32(4): 579‒593.
連結:
-
Vanwalleghem, T., Meentemeyer, R. 2009. Predicting forest microclimate in heterogeneous landscapes. Ecosystems 12(7): 1158‒1172.
連結:
-
Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B Biol Sci. 365(1549):2019‒2024.
連結:
-
Wang, T., Hamann, A., Spittlehouse, D., Carroll, C. 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One 11(6): e0156720.
連結:
-
Williams, J. N., Seo, C., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., Schwartz, M. W. 2009. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15(4): 565‒576.
連結:
-
Xu, Y., Huang, Y., Zhao, H., Yang, M., Zhuang, Y., Ye, X. 2021. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests 12(4): 429.
連結:
-
Zhao, X., Meng, H., Wang, W., Yan, B. 2016. Prediction of the distribution of alpine tree species under climate change scenarios: Larix chinensis in Taibai Mountain (China). Pol. J. Ecol. 64(2): 200‒212.
連結:
-
Zhu, Y., Wei, W., Li, H., Wang, B., Yang, X., Liu, Y. 2018. Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob. Ecol. Conserv. 16: e00501.
連結:
-
Hsieh, C. F., Chao, W. C., Liao, C. C., Yang, K. C., Hsieh, T. H. 1997. Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat. Hist. Res. 4, 1‒16.
-
IPCC. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
-
Liaw, A., Wiener, M. 2002. Classification and regression by random. Forest. R news 2(3): 18‒22.
-
Su, H. J. 1984. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17: 57‒73.
-
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., Thuiller, C. W. 2016. Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework.
-
Weng, S., Yang, C. 2012. The construction of monthly rainfall and temperature datasets with 1km gridded resolution over Taiwan area (1960‒2009) and its application to climate projection in the near future (2015‒2039). Atmos. Sci. 40(4): 349‒369.
|