题名

射出成形之INCONEL 713LC微觀組織與高溫機械性質探討

并列篇名

A Study on the Microstructure and High Temperature Mechanical Properties of Inconel 713LC Formed by Metal Injection Molding

DOI

10.30069/MM.201809_62(3).0011

作者

陳順發(S. F. Chen);姚智凱(C. K. Yao);黃維彬(W. P. Huang);李輝隆(H. L. Lee)

关键词

金屬射出成形 ; 鎳基超合金 ; metal injection molding ; nickel base super alloy

期刊名称

鑛冶:中國鑛冶工程學會會刊

卷期/出版年月

62卷3期(2018 / 09 / 01)

页次

86 - 92

内容语文

繁體中文

中文摘要

由於節能減碳的要求,渦輪增壓器被應用於提高汽車引擎的馬力及燃燒效率,由排放的廢氣推動的渦輪需要具備優異的高溫機械性質及抗氧化性,為飛機引擎開發的Inconel 713LC因此被用於製造渦輪增壓器之渦輪。本研究以金屬射出成形方式製作Inconel 713LC試片,以真空爐在1230-1280℃溫度範圍燒結,在室溫及600-1000℃進行拉伸試驗,探討燒結組織對機械性質之影響。實驗結果顯示,密度隨燒結溫度上升而提高,1260℃達到99%以上之相對密度。室溫強度及延伸率在1260℃達到最高值,更高的燒結溫度反而使強度及延展性降低。高溫拉伸試驗結果顯示,強度隨溫度升高而下降的趨勢在600℃以上變得明顯,延伸率在 700℃及800℃之間降至最低,由於破斷後的試片表面觀察發現600-1000℃裂痕起源於晶界,推斷延伸率降低可能與晶界析出較粗大且較連續的γ'相有關。

英文摘要

The Inconel 713LC had good high temperature strength and excellent oxidation resistance suitable for manufacturing the turbine wheel of turbocharger. In this investigation, the sample of Inconel 713LC formed by metal injection molding process and sintered in vacuum furnace at temperature of 1230-1280℃ were tensile tested at room temperature and 600-1000℃ to study the effect of microstructure on the mechanical properties. Results indicated that 99% relative density was achieved when the sample was sintered at 1,260℃. When the sample was sintered at higher temperature, the strength and ductility decreased due to coarsening of microstructure. The strength of high temperature tensile test decreased slowly with increasing test temperature up to 600℃. The tendency of strength decreasing became more obvious when tested at temperature higher than 600℃. The ductility dropped suddenly when tested at temperature 700℃ and 800℃. The side view of the fractured sample showed that the fracture initiated at grain boundary region probably due to the coarsening of γ' phase.

主题分类 工程學 > 礦冶與冶金工程
参考文献
  1. Chang, S.H.(2012).Materials Transactions,53(2),446-452.
  2. Donachie, M. J.,Donachie, S. J.(2002)."Superalloys": a technical guide.Materials Park:ASM International.
  3. Gessinger, G.H.(1984).Powder Metallurgy of Superalloys.Butterworth & Co..
  4. Jonsta, P.,Jonsta, Z.,Sojka, J.,Cizek, L.,Hernas, A.(2007).Journal of Achievements in Materials and Manufacturing Engineering,21(2),29-32.
  5. Jonsta, P.,Jonsta, Z.,Sojka, J.,Vodarek, V.(2006).Acta Metallurgica Slovaca,12,436-442.
  6. Kunza, L.,Lukas, P.,Konecna, R.,Fintova, S.(2012).International Journal of Fatigue,41,47-51.
  7. Sims, Chester T.(ed.)(1987).Superalloys II.
  8. Wei, C.N.,Bor, H.Y.,Ma, C.Y.,Lee, T.S.(2003).Materials Chemistry and Physics,80,89-93.
  9. Zykai, J.,Andrsovai, I.,Podhorna, B.,Hrbacek, K.(2013).Metal,5,15-17.