题名

泥岩邊坡紋溝發育過程與機制

并列篇名

The Process and Mechanism of Rill Development on Mudstone Slope A Case Study in Taiwan

DOI

10.6161/jgs.2016.81.02

作者

楊啟見(Ci-Jian Yang);林俊全(Jiun-Chuan Lin);鄭遠昌(Yuan-Chang Cheng)

关键词

泥岩 ; 地面三維雷射掃描儀 ; 水槽 ; 紋溝發育 ; 泥裂 ; mudstone ; ground LIDAR ; flume ; rill development ; mudcracks

期刊名称

地理學報

卷期/出版年月

81期(2016 / 06 / 01)

页次

27 - 42

内容语文

繁體中文

中文摘要

本研究旨在模擬泥岩風化層的水力侵蝕過程,考量野外實驗難以模擬泥岩風化層的侵蝕過程,故於室內實驗設計沖蝕水槽,實驗樣本取自臺灣臺南市龍崎區牛埔水土保持教室,利用樣區所採集的泥岩風化層為材料,模擬地表逕流侵蝕,配合地面三維雷射掃描儀測繪,重建逐時變化的侵蝕過程與量測侵蝕量,由於地面光達可以提供高解析度的數值高程模型,因此可偵測到紋溝形成等微地形的變化,有助於討論泥岩風化層侵蝕地形的演育過程與機制。研究結果顯示:1. 泥岩邊坡風化層在逕流量固定下,侵蝕量呈非線性成長,原因在侵蝕型態轉變。侵蝕階段依照侵蝕型態與侵蝕量變化可分為四個階段,一、片狀侵蝕期;二、紋溝侵蝕期。三、崩塌期;四、穩定期。2. 泥裂在片狀侵蝕期能匯集逕流,泥裂發達的邊坡會可造成較高的侵蝕量與侵蝕速率。3. 泥裂會影響紋溝的發育時間與位置。4. 泥岩侵蝕具有穩定階段,此時侵蝕量與侵蝕速率均下降或持平,推測泥岩邊坡具有侵蝕限制。

英文摘要

This study observes the process and understands the influence of micromorphology by using laboratory flume experiments. The mudstone is sampled from the mudstone area in Long-Chi district, south western Taiwan, which is famous for the Gutinken formation. To obtain the volume of mudstone erosion and terrain changes during experiments, ground LIDAR is used to scan the sample flume surface several times. The ground LIDAR data provide high-resolution elevation values to demonstrate micromorphology change, assisting the understanding of the process and mechanism of water erosion on mudstone slopes. The following conclusions can be drawn from the analysical results. (1) Due to the change of erosion pattern, the erosive volume has non-linear growth, and even the runoff is fixed. Erosion can be classified into four types according to the erosion pattern and volume: (a) sheet erosion; (b) rill erosion; (c) failure; (d) stable. (2) Mudcracks can gather runoff in the of sheet erosion stage. Hence, slopes with mudcracks cause more soil loss than the non-mudcracked slopes. Furthermore, slopes with mudcracks cause more soil loss than the non-mudcracked slopes. (3) Mudcracks influence the spatial distribution and trigger time of the rill. (4) The erosive volume and rate decrease in the stable stage, indicating that a erosion limitation controls the evolution of mudstone slopes.

主题分类 人文學 > 地理及區域研究
参考文献
  1. Jacks, G. V. 1948. Soil conservation. Nature 162: 13-4, doi: 10.1038/162013a0.
  2. Afana, A.,Sole-Benet, A.,Perezc, J. L.(2010).Determination of soil erosion using laser scanners.19th World Congress of Soil Science, Soil Solutions for a Changing World,Queensland, Australia:
  3. Artemi, C.,Fayos, P. G.(1997).The influence of slope angle on sediment, water and seed losses on badland landscapes.Geomorphology,18(2),77-90.
  4. Bouchnak, H.,Felfoul, M. S.,Boussema, M. R.,Snane, M. H.(2009).Slope and rainfall effects on the volume of sediment yield by gully erosion in the souar lithologic formation (Tunisia).Catena,78,170-7.
  5. Bryan, R. B.(1979).The influence of slope angle on soil entrainmentby sheetwash and rainsplash.Earth Surface Processes and Landforms,4(1),43-58.
  6. Bryan, R. B.(2000).Soil erodibility and processes of water erosion on hillslope.Geomorphology,32(3-4),385-415.
  7. Clarke, M. L.,Rendell, H. M.(2006).Process-form relationships in southern Italian badlands: Erosion rates and implications for landform evolution.Earth Surface Processes and Landforms,31,15-29.
  8. Descroix, L.,Barrios, J. L. G.,Viramontes, D.,Poulenard, J.,Anaya, E.,Esteves, M.,Estrada, J.(2008).Gully and sheet erosion on subtropical mountain slopes: Their respective roles and the scale effect.Catena,72,325-39.
  9. Fox, D. M.,Bryan, R. B.(1999).The relationship of soil loss by interrill erosion to slope gradient.Catena,38,211-22.
  10. Fu, S. H.,Liu, B. Y.,Liu, H. P.,Xu, L.(2011).The effect of slope on interrill erosion at short slopes.Catena,84,29-34.
  11. Gabriels, D.(1999).The effect of slope length on the amount and size distribution of eroded silt loam soils: Short slope laboratory experiments on interrill erosion.Geomorphology,28(1-2),169-72.
  12. Huang, C.,Bradford, J. M.(1993).Application of a laser scanner to quantify properties of soil crusts.Catena,24,129-39.
  13. Huang, C.,Bradford, J. M.(1990).Portable laser scanner for measuring soil surface roughness.Soil Science Society of America Journal,54,1402-6.
  14. Huang, C.,White, I.,Thwaite, E. G.,Bendeli, A.(1988).A noncontact laser system for measuring soil surface topography.Soil Science Society of America Journal,52,350-5.
  15. Kasanin-Grubin, M.(2008).Badlands and environmental change.Geographica Helvetica,63,15-25.
  16. Krause, A. K.,Franks, S. W.,Kalma, J. D.,Loughran, R. J.,Rowan, J. S.(2003).Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia.Catena,53(4),327-48.
  17. Lal, R.(2003).Soil erosion and the global carbon budget.Environment International,29,437-50.
  18. Luk, S. H.(1979).Effect of soil properties on erosion by wash and splash.Earth Surface Processes and Landforms,4,241-55.
  19. Nearing, M. A.(2001).Impacts of climate change on erosivity in the United States: 2000-2050.the Soil Erosion Research for the 21st Century,Hawaii, USA:
  20. Pimentel, D.(2006).Soil erosion: A food and environmental threat.Environment, development and sustainability,8,119-37.
  21. Pimentel, D.,Harvey, C.,Resosudarmo, P.,Sinclair, K.,Kurz, D.,McNair, M.,Crist, S.,Shpritz, L.,Fitton, L.,Saffouri, R.,Blair, R.(1995).Environmental and economic costs of soil erosion and conservation benefits.Science,267,1117-23.
  22. Pimentel, D.,Kounang, N.(1998).Ecology of soil erosion in ecosystems.Ecosystems,1(5),416-26.
  23. Römkens, M. J. M.,Helming, K.,Prasad, S. N.(2001).Soil erosion under different rainfall intensities, surface roughness, and soil water regimes.Catena,46,103-23.
  24. Uri, N. D.(2001).The environmental implications of soil erosion in the United States.Environmental Monitoring and Assessment,66,293-312.
  25. Wasson, R. J.,Caitcheon, G.,Murray, A. S.,McCulloch, M.,Quade, J.(2002).Sourcing sediment using multiple tracers in the catchment of Lake Argyle, Northwestern Australia.Environmental Management,29(5),634-46.
  26. William, J.,Nearing, M. A.,Nicks, A.,Skidmore, E.,Valentine, C.,King, K.,Savabi, R.(1996).Using soil erosion models for global change studies.Soil and Water Conservation,51(5),381-5.
  27. Yair, A.,Naama, R. Y.(2004).Hydrological processes in a small arid catchment: Scale effectsof rainfall and slope length.Geomorphology,61,155-69.
  28. Zhang, G. H.,Nearing, M. A.,Liu, B. Y.(2005).Potential effects of climate change on rainfall erosivity in the yellow river basin of China.Transactions of the ASAE,48(2),511-7.
  29. 李德河、邱德夫(1987)。行政院國家科學委員會防災科技研究報告行政院國家科學委員會防災科技研究報告,未出版
  30. 邱創益(1999)。泥岩植生復育法。1999 年泥岩地區整治與植生綠化研討會論文集,臺中=Taichung:
  31. 范正成(2008)。國家科學委員會專題研究計畫報告國家科學委員會專題研究計畫報告,未出版
  32. 張祖達(2012)。Taipei,國立臺灣大學地理環境資源研究所=Department of Geography, National Taiwan University。
  33. 雷阿林、王文龍、唐克莉(2000)。土壤侵蝕鍊概念的科學意義及其特徵。水土保持學報,15(4),79-83。
  34. 臺灣省水土保持局編(1992)。水土保持手冊。臺灣省水土保持局=Tai wan sheng shui tu bao chi ju。
  35. 顏富士(1991)。行政院國家科學委員會防災科技研究報告行政院國家科學委員會防災科技研究報告,未出版
  36. 顏富士、孫思優、趙徐中(1988)。臺灣西南部泥岩的崩解行為與其顯微構造關係。鑛冶,32(4),128-40。
  37. 顏富士、陳家駿(1990)。臺灣西南部泥岩坡地地貌與風化侵蝕之關係。鑛冶,34(3),80-93。