题名

山區聚落複合式災害之危害評估

并列篇名

Hazard Assessment of Compound Disaster in Mountain Communities

DOI

10.6161/jgs.201803_(88).0001

作者

蔡元芳(Yuan-Fang Tsai);林庚翰(Keng-Han Lin);蘇文瑞(Wen-Ray Su);陳晉琪(Jinn-Chyi Chen)

关键词

危害評估 ; 複合式災害 ; 土石流 ; 洪澇 ; 山區聚落 ; Hazard assessment ; Compound Disaster ; debris flow ; flood ; mountain communities

期刊名称

地理學報

卷期/出版年月

88期(2018 / 03 / 01)

页次

1 - 30

内容语文

繁體中文

中文摘要

颱風具降雨延時長且降雨強度高之特性,促使山區敏感地帶發生複合式災害,且各災害間可能具連鎖特性,較難以預知災害規模或災情發生,進而使山區聚落與鄰近河道設施受到無法預期的洪澇災害衝擊。目前危害評估研究缺乏整合性,為此本研究將針對莫拉克颱風事件下之南沙魯里進行複合式災害之危害評估。首先透過災害數值模擬軟體分析土石流危害與堆積範圍(FLO-2D),並再對旗山溪南沙魯里河段進行洪澇危害評估(HEC-RAS),而為證實土石流對洪澇危害的複合式災害(Compound Disaster)特性(鏈結與累加性),洪澇模擬分為正常洪水情境與複合式災害情境,以探討兩情境評估結果之差異。土石流評估上對DF007與DF070進行模擬,結果發現旗山溪受土方量堆積使得河道地形大幅抬升。兩情境洪澇模擬上,複合式災害情境之河道地形受土石流堆積土方量擠壓,使河道主槽靠往右岸且通洪斷面減少而發生回水效應,故此情境之流動範圍、最大流動深度與平均流動深度皆高於正常洪水情境(分別為66.4%、57%、35%)。最後利用災後地形高程模型、災後影像與實際災情檢核進行驗證,發現複合式災害模擬情境結果於各驗證項目上皆較為準確。故於山區地帶上,強降雨事件之洪澇危害評估需考量土石流扇狀地堆積物的影響,才能使災前危害評估與防災規劃更為完善。

英文摘要

Typhoon rainfall induces multiple hazards in mountain villages. These hazards have a cascade effect, causing government and public to incompletely foresee and manage the disaster risk. Many studies have not comprehensively identified disaster hazards due to lack of understanding of the Compound Disaster perspective. Therefore, this study adopts these concepts to hazard assessment in Nansalu. The disaster categories of assessment include debris flow and flood. The potential hazard region of the debris flow and flood are computed separately using FLO-2D and HEC-RAS, which are numerical simulation modeling software packages. Results of debris flow analysis demonstrate that the topography of the Cishan River changed because of sediment-deposit. In flood analysis, in order to understand the cascade effect of Compound Disaster, this study designs two simulation scenarios to compare the assessment results in each. These scenarios are the "Normal Flood Assessment" scenario and "Compound Disaster Assessment" scenario, which considered the simulation terrain to have been deposited by debris flow. Simulation results show that the flow direction of Cishan River was changed (from left bank to right bank), and in the "Compound Disaster Assessment" scenario results, the flow area, maximum flow depth and average flow depth was 66.4%, 57% and 35%, respectively, higher than the "Normal Flood Assessment" scenario results owing to the backwater effect. Finally, the digital elevation model, the disaster image and the disaster information are utilized to validate the result of hazard assessment. This study concludes that the result of validation analysis from the "Compound Disaster Assessment" scenario are more similar to reality than those from the "Normal Flood Assessment" scenario in, especially in terms of the reality disaster information. In conclusion, disaster assessment analysis should define the potential hazard area using the Compound Disaster perspective, particularly in mountain communities. Therefore, disaster prevention planning is the best option for avoiding losses from disasters.

主题分类 人文學 > 地理及區域研究
参考文献
  1. 張學聖, H. S.,廖晉賢, J. X.(2014)。複合性災害評估架構研究:莫拉克風災為例。都市與計劃,41(3),305-327。
    連結:
  2. 陳禹銘, Y. M.,許秋玲, Q. L.,樊國恕, G. S.(2009)。我國複合災害風險系統架構之探討。危機管理學刊,6(2),1-12。
    連結:
  3. 蘇文瑞, W. R.,蔡元芳, Y. F.,林立偉, L. W.,陳怡臻, Y. C.(2010)。國民小學天然災害風險評估之研究─以土石流、洪水、地震為例。華岡地理學報,25,21-35。
    連結:
  4. Appelquist, L. R.,Balstrøm, T.(2015).Application of a new methodology for coastal multi-hazardassessment & management on the state of Karnataka, India.Journal of Environmental Management,152,1-10.
  5. Araya-Muñoz, D.,Metzger, M. J.,Stuart, N.,Wilson, A. M. W.,Carvajal, D.(2017).A spatial fuzzy logic approach to urban multi-hazard impact assessment in Concepción.Science of The Total Environment,576,508-519.
  6. Asian Development Bank,Asian Development Bank Institute(2013).Disaster Risk Management in Asia and the Pacific Issue Paper.Japan:Asian Development Bank.
  7. Brunner, G. W.(2015).HEC-RAS River Analysis System 2D Modeling User's Manual Version 5.0.USA:US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center.
  8. Carpignano, A.,Golia, E.,Di Mauro, C.,Bouchon, S.,Nordvik, J. P.(2009).A methodological approach for the definition of multi-risk maps at regional level: first application.Journal Risk Research,12(3-4),513-534.
  9. Chen, H. X.,Zhang, S.,Peng, M.,Zhang, L. M.(2016).A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows.Engineering Geology,203,15-29.
  10. Chen, L.,Westen, C. J.,Hussin, H.,Ciurean, R. L.,Turkington, T.,Chavarro-Rincon, D.,Shrestha, D. P.(2016).Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps.Geomorphology,273,150-167.
  11. Chen, Y. S.,Kuo, Y. S.,Lai, W. C.,Tsai, Y. J.,Lee, S. P.,Chen, K. T.,Shieh, C. L.(2011).Reflection of Typhoon Morakot – The challenge of compound disaster simulation.Journal of Mountain Science,8,571-581.
  12. Dai, J.,Chen, W.,Zhou, B.(1980).An experimental study of slurry transport in Pipes.Proc., Int. Symposium on River Sedimentation,Beijing, China:
  13. Fan, L.,Lehmann, P.,McArdell, B.,Or, D.(2017).Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment.Geomorphology,280,1-15.
  14. Federal Emgency Management Agency(1997).FEMA's multi-hazard identification and risk assessment.USA:Federal Emgency Management Agency.
  15. Forzieri, G.,Feyen, L.,Russo, S.,Vousdoukas, M.,Alfieri, L.,Outten, S.,Migliavacca, M.,Bianchi, A.,Rojas, R.,Cid, A.(2016).Multi-hazard assessment in Europe under climate change.Climatic Change,137,105-119.
  16. Gall, M.,Nguyen, K. H.,Cutter, S.(2015).Integrated research on disaster risk: Is it really integrated?.International Journal of Disaster Risk Reduction,12,255-267.
  17. Gallina, V.,Torresan, S.,Critto, A.,Sperotto, A.,Glade, T.,Marcomini, A.(2016).A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.Journal of Environmental Management,168,123-132.
  18. Garcia-Aristizabal, A.,Marzocchi, W.(2012).Garcia-Aristizabal, A., and W. Marzocchi. 2012. Bayesian Multi-risk Model: Demonstration for Test City Researchers. Deliverable 2.13. CLUVA project..
  19. Gill, J. C.,Malamud, B. D.(2017).Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework.Earth-Science Reviews,166,246-269.
  20. Granger, K.,Trevor, J.,Marion, L.,Greg, S.(1999).Community risk in Cairns: a multi-hazard risk assessment.Australian Journal of Emergency Management,1999,29-30.
  21. Johnson, K.,Depietri, Y.,Breil, M.(2016).Multi-hazard risk assessment of two Hong Kong districts.International Journal of Disaster Risk Reduction,19,311-323.
  22. Kang, Z.,Zhang, S.(1980).A preliminary analysis of the characteristics of debris flow.Proc, Int. Symposium on River Sedimentation,Beijing, China:
  23. Kawata, Y.(2011).Downfall of Tokyo due to devastating compound disaster.Journal of Disaster Research,6(2),176-184.
  24. Khazai, B.,Sitar, N.(2000).Assessment of seismic slope stability using GIS modeling.Geographic Information Sciences,6(2),121-128.
  25. Lin. P. S.,Lee, J. H.,Chang, C. W.(2011).An application of the FLO-2D model to debris-flow simulation –A case study of Song-Her district in Taiwan.5th International Conference on Debris-flow Hazards Mitigation, Mechanics, Prediction and Assessment,Padua, Italy:
  26. Lung, T.,Lavalle, C.,Hiederer, R.,Dosio, A.,Bouwer, L. M.(2013).Global Environmental Change,23,522-536.
  27. O'Brien, J. S.(2006).FLO-2D users manual version 2006.Nutrioso:Flo engineering.
  28. O'Brien, J. S.,Julien, P. Y.(1988).Laboratory analysis of mudflow properties.Journal of Hydraulic Engineering,114(8),877-887.
  29. Saksena, S.,Merwade, V.(2015).Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping.Journal of Hydrology,530,180-194.
  30. Shrestha, S.,Lohpaisankrit, W.(2016).Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand.International Journal of Sustainable Built Environment,6(2),285-298.
  31. Sodnik, J.,Podobnikar, T.,Mikoš, M.(2012).Using LIDAR data for debris flow modelling.12thCongress INTERPRAEVENT 2012,Grenoble, France:
  32. Sosio, R.,Crosta, G. B.,Frattini, P.(2007).Filed observations, rheological testing and numerical modelling of a debris-flow event.Earth Surface Proccesses Landforms,32,209-306.
  33. Stolz, A.,Huggel, C.(2008).Debris flows in the Swiss National Park: The influence of different flow models and varying DEM grid size on modeling results.Landslides,5,311-319.
  34. Wang, W.,Gao, Y.,Anacona, P. I.,Lei, Y.,Xiang, Y.,Zhang,Li, S.,Lu, A.(2015).Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas.Geomorphology
  35. Ziemer, R. R.(1991).An approach to evaluating the long-term effects of land use on landslides, erosion, and stream channels.Japan-U. S. Workshop on Snow Avalanche, Landslide, Debris Flow Prediction and Control,Tsukuba, Japan:
  36. 丁信修, X. X.(1986)。Taipei,Department of Geoscience, National Taiwan University。
  37. 方思怡, S. Y.(2014)。Tainan,Department of Urban Planning, National Cheng Kung University。
  38. 王瑞瑄, J. H.(2012)。Tainan,Department of Urban Planning, National Cheng Kung University。
  39. 打荻珠男(1971)。ひと雨による山腹崩壊について。新砂防,23(4),21-34。
  40. 交通部運輸研究所, Ministry of Transportation and Communications(2012)。,臺北=Taipei:交通部運輸研究所=Institute of Transportation, Ministry of Transportation and Communications。
  41. 池谷浩(1980)。土石流災害調查法。日本=Japan:山海堂=Shan hai tang。
  42. 行政院主計總處 [Directorate General of Budget, Accounting and Statistics, Executive Yuan, R.O.C.] 2016。國情統計通報 183 號 [Guo qing tong ji tong bao 183hao]。https://www.dgbas.gov.tw/lp.asp?CtNode=1481&CtUnit=690&BaseDSD=7&mp=1 (擷取日期:2017.02.19)。
  43. 行政院農委會水土保持局 [Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan] . 2016a。土砂災害空間資訊系統 [Tu sha zai hai kong jian zi xun xi tong]。http://246gis.swcb.gov.tw/(擷取日期:2016.12.15)。
  44. 行政院農委會水土保持局 [Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan] 2009。98 年莫拉克颱風重大土石災例速報 [98nian mo la ke tai feng zhong da tu shi zai li su bao]。http://246.swcb.gov.tw/allfiles/PDF/98%E5%B9%B4%E8%8E%AB%E6%8B%89%E5%85%8B%E9%A2%B1%E9%A2%A8-%E9%AB%98%E9%9B%84%E9%82%A3%E7%91%AA%E5%A4%8F-00 3-(%E9%80%9F).pdf (擷取日期:2017.01.19)。
  45. 行政院農委會水土保持局 [Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan] . 2016b。災害的特性 [Zai hai de te xing]。https://246.swcb.gov.tw/debrisClassInfo/whatisdisasters/whatisdisasters3.aspx (擷取日期:2016.12.7)。
  46. 林伯勳, B. X.,許振崑, Z. K.,冀樹勇, S. Y.(2011)。集水區土壤厚度經驗式應用分析。中興工程季刊,111,35-45。
  47. 林奕舟, Y. J.(2010)。Taipei,Department of Water Resources and Environmental Engineering, Tam Kang University。
  48. 林暘壹, Y. I.(2013)。Tainan,Department of Hydraulic and Ocean Engineering, National Cheng Kung University。
  49. 林祺岳, Q. Y.(2011)。Taipei,Department of Social and Regional Development, National Taipei University of Education。
  50. 林漢良, H.L.(2008)。,未出版
  51. 林德貴, D. G.,徐森彥, S. Y.,趙啟宏, C. H.,溫惠鈺, H. Y.,許世孟, S. M.,顧承宇, C. Y.,冀樹勇, S. Y.(2008)。土石流流動模擬技術於災害風險區劃定及災損評估應用之研究。中華水土保持學報,39,4391-4402。
  52. 施國欽, G. Q.(1999).大地工程學-岩石力學.臺北=Taipei:文笙出版社=Wensheng Book Store.
  53. 曹鼎志, T. C.,許志豪, C. H.,鍾佩蓉, P. J.(2011)。,未出版
  54. 陳亮全, L. Q.,吳杰穎, J. Y.,邵珮君, P. J.,林文苑, W. Y.,柯于璋, Y. Z.,洪鴻智, H. Z.,陳天健, T. J.,黃智彥, Z. Y.,詹士樑, S. L.,薩支平, Z. P.(2007).災害管理學辭典.臺灣=Taiwan:五南圖書出版股份有限公司=Wu-Nan Book Inc..
  55. 溫惠鈺, H. Y.,許世孟, S. M.,陳耐錦, N. G.(2009)。集水區土砂產量推估之研究-以花蓮萬里溪流域為例。2009 年第十三屆地工技術研討會
  56. 經濟部水利署水利規劃試驗所, Water Resources Agency, Ministry of Economic Affairs(2010).氣候變遷下台灣南部河川流域土砂處理對策研究─以高屏溪為例(1/2).彰化=Changhua:經濟部水利署水利規劃試驗所=Water Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs.
  57. 經濟部水利署南區水資源局, Water Resource Agency, Ministry of Economic Affairs(2012).曾文水庫越域引水工程計畫流域環境監測及新取水工程可行性評估.臺南=Tainan:經濟部水利署南區水資源局=Southern Region Water Resources Office, Water Resource Agency, Ministry of Economic Affairs.
  58. 經濟部水利署南區水資源局, Water Resource Agency, Ministry of Economic Affairs(2015).曾文水庫越域引水工程計畫流域環境監測及新取水工程可行性評估.臺南=Tainan:經濟部水利署南區水資源局=Southern Region Water Resources Office, Water Resource Agency, Ministry of Economic Affairs.
  59. 詹錢登, C. D.,陳晉琪, J. C.(1997)。應用直立旋轉式水槽研究土石流體之流動現象。中華水土保持學報,28(2),157-164。
  60. 廖于慧, Y. H.(2008)。Pingtung,Department of Civil Engineering, National Pingtung University of Science and Technology。
  61. 趙啟宏, C. H.(2004)。Taipei,Department of Civil Engineering, National Taiwan University。
  62. 潘運行, Y. X.(2016)。Taipei,Department of Social and Regional Development, National Taipei University of Education。
  63. 蔡元芳, Y. F.(2012)。,臺北=Taipei:科技部=Ministry of Science and Technology。
  64. 蔡元芳, Y. F.,林祺岳, Q. Y.(2010)。複合式災害對防災空間系統衝擊之研究。2010 年海峽兩岸三地環境與資源學術研討會
  65. 蔡元芳, Y. F.,顏志瑋, Z. W.,鄭于綸, Y. L.(2012)。應用 FLO-2D 於土石流防治工程方案決策分析─以高雄市南沙魯里為例。2012 年第十六屆海峽兩岸水利科技交流研討會
  66. 蔡元芳, Y. F.,羅楷傑, K. J.,林祺岳, Q. Y.,傅金城, J. C.,蘇文瑞, W. R(2014)。楠梓仙溪流域土砂生產量對河道地形變動之影響。2014 年 TCCIP 氣候變遷資料使用經驗分享研討會
  67. 謝平城, P. C.,湯嘉芸, C. Y.,林俐玲, L. L.(2008)。應用 HEC-GeoRAS 淹水模擬之研究─以南湖溪為例。水土保持學報,40(4),455-466。
  68. 謝正倫, C. L.,陳禮仁, L. R.(1993)。土石流潛在溪流之危險度的評估方法。中華水土保持學報,24(1),13-19。
  69. 謝正倫, C. L.,蔡元融, Y. R.,林彥均, Y. J.,陳俞旭, Y. S.,邱禎龍, C. L.(2009)。應用動床演算於流域土砂收支模式之研究。2009 年流域地質與坡地災害研討會
  70. 蘇立明, L. M.(2003)。Taipei,Department of Bioenvironmental Systems Engineering, National Taiwan University。