题名

第五版IMERG Early、Late及Final runs衛星資料對2014-2017年期間臺灣暖季降雨特性的表現能力比對

并列篇名

Comparison of the Warm Season Rainfall Estimations in Taiwan during 2014-2017 from IMERG Version 5 Early, Late and Final run Satellite Products

DOI

10.6161/jgs.202008_(96).0001

作者

劉品誼(Pin-Yi Liu);黃婉如(Wan-Ru Huang)

关键词

衛星觀測資料 ; 暖季降雨 ; 臺灣 ; satellite precipitation products ; warm season rainfall ; Taiwan

期刊名称

地理學報

卷期/出版年月

96期(2020 / 08 / 01)

页次

1 - 26

内容语文

繁體中文

中文摘要

本研究評估第五版Integrated Multi-satellite Retrieval for Global Precipitation Measurement(簡稱IMERG)Early run,Late run及Final run衛星降水產品對2014-2017年臺灣暖季(5-10月)降雨特性的表現能力。其中Final run產品的發布時間較實際觀測時間延遲2.5個月,而 Early run(延遲4小時)、Late run(延遲12小時)產品的發布時間則較即時。研究重點在了解上述三組產品對(1)降雨的平均狀態,(2)不同降雨強度的發生頻率比例,及(3)極端降雨指數的表現能力差異。結果發現,以降雨的平均狀態來說,Final run的表現能力比Early run及Late run好。就降雨事件的發生頻率來看,Final run在強度為20 mm/day以上的降雨發生頻率比例幾乎與地面觀測一致,Early run和Late run則為低估的情況。此外,三組衛星資料都對於越強降雨的掌握能力越低,但Final run對於定量降雨掌握能力優於Early run及Late run。最後我們參考世界氣象組織氣候變化檢測和指標專家小組提出的4種極端降雨指數來檢驗衛星資料對臺灣極端降雨的掌握情況。結果顯示,Final run較Early run及Late run能夠掌握臺灣暖季極端降雨的空間分布特徵。而對於即時資料的使用者,我們提醒若僅就降雨的空間分布來看,Late run相較於Early run更能掌握臺灣降雨的分布特徵。但需注意到Early run、Late run對於較強的降雨量都有明顯低估的情形,並以Late run低估的程度較多。以上成果有助於未來應用IMERG產品進行臺灣降雨相關議題分析之參考。

英文摘要

This study evaluates the performance of IMERG (Integrated Multi-satellite Retrieval for Global Precipitation Measurement) version 5 Early run, Late run, and Final run satellite products in identifying the characteristics of warm season (May to October) rainfall in Taiwan during 2014-2017. The update time of Final run product is delayed about 2.5 months from the observed time, while the update time of Early run (delayed about 4 hours) and Late run (delayed about 12 hours) products is closer to real-time. The analyses of this study focus on the assessment of satellite products in depicting (1) the mean status of rainfall, (2) the occurrence frequency of rainfall in various criteria of intensity and (3) the extreme rainfall indices. Analytical results show that the Final run performs better than Early and Late runs for measuring the mean status of rainfall. In addition, the Final run estimation of the occurrence frequency of rainfall ≥ 20 mm/day is almost the same as the surface observation result, while the Early and Late runs underestimate the percentage. The Final run also performs better than Early and Late runs for quantitative precipitation estimation, even though all three satellite products show a similar feature that the performance skill usually declines with increasing thresholds of rainfall intensity. Finally, the performance of satellite products in depicting the extreme rainfall in Taiwan is assessed using four extreme rainfall indices suggested by the WMO (World Meteorological Organization) ETCCDI (Expert Team on Climate Change Detection and Indices). Analytical results reveal that the Final run performs better than the Early and Late runs in depicting the four extreme rainfall indices. However, researchers who wish to use more real-time data (e.g., Early and Late runs) should note that Late run (Early run) performs better than Early run (Late run) in qualitatively (quantitatively) depicting the spatial-temporal variations of warm season rainfall in Taiwan. These analytical results provide valuable information for future application of IMERG products in studying the related issues of warm season rainfall in Taiwan.

主题分类 人文學 > 地理及區域研究
参考文献
  1. Acharya, N.,Frei, A.,Chen, J.,DeCristofaro, L.,Owens, E. M.(2017).Evaluating stochastic precipitation generators for climate change impact studies of New York City’s primary water supply.Journal of Hydrometeorology,18,879-896.
  2. Boushaki, F. I.,Hsu, K. L.,Sorooshian, S.,Park, G. H.,Mahani, S.,Shi, W.(2009).Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States.Journal of Hydrometeorology,10,1231-1242.
  3. Chen, C. S.,Chen, Y. L.(2003).The rainfall characteristics of Taiwan.Monthly Weather Review,131,1323-1341.
  4. Chen, S.,Hong, Y.,Cao, Q.,Kirstetter, P. E.,Gourley, J. J.,Qi, Y. C.,Zhang, J.,Howard, K.,Hu, J. J.,Wang, J.(2013).Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events?.Journal of Hydrology,506,4-13.
  5. Cressman, G. P.(1959).An operational objective analysis system.Monthly Weather Review,87,367-374.
  6. Derin, Y.,Yilmaz, K. K.(2014).Evaluation of multiple satellite-based precipitation products over complex topography.Journal of Hydrometeorology,15,1498-1516.
  7. Dinku, T.,Chidzambwa, S.,Ceccato, P.,Connor, S. J.,Ropelewski, C. F.(2008).Validation of high-resolution satellite rainfall products over complex terrain in Africa.International Journal of Remote Sensing,29,4097-4110.
  8. Futrell, J. H.,Gephart, R. E.,Kabat-Lensch, E.,McKnight, D. M.,Pyrtle, A.,Schimel, J. P.,Smyth, R. L.,Gephart, J. M.(2005).Office of Scientific & Technical Information Technical ReportsOffice of Scientific & Technical Information Technical Reports,Richland, Washington:Pacific Northwest National Laboratory=PNNL.
  9. Gaona, M. F. R.,Overeem, A.,Leijnse, H.,Uijlenhoet, R.(2016).First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (VO3D).Journal of Hydrometeorology,17,2799-2814.
  10. Guo, H.,Chen, S.,Bao, A.,Behrangi, A.,Hong, Y.,Ndayisaba, F.,Hu, J.,Stepanian, P. M.(2016).Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China.Atmospheric Research,176-177,121-133.
  11. Hong, Y.,Chen, S.,Xue, X.,Hodges, G.(2012).Global precipitation estimation and applications.Multiscale Hydrologic Remote Sensing: Perspectives and Applications,Boca Raton, Florida:
  12. Hong, Y.,Hsu, K. L.,Sorooshian, S.,Gao, X. G.(2004).Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system.Journal of Applied Meteorology and Climatology,43(12),1834-1852.
  13. Hou, A. Y.,Kakar, R. K.,Neeck, S.,Azarbarzin, A. A.,Kummerow, C. D.,Kojima, M.,Oki, R.,Nakamura, K.,Iguchi, T.(2014).The global precipitation measurement mission.Bulletin of the American Meteorological Society,95,701-722.
  14. Huang, W. R.,Chang, Y. H.,Liu, P. Y.(2018).Assessment of IMERG precipitation over Taiwan at multiple timescales.Atmospheric Research,214,239-249.
  15. Huang, W. R.,Chen, K. C.(2015).Trends in pre-summer frontal and diurnal rainfall activities during 1982-2012 over Taiwan and Southeast China: Characteristics and possible causes.International Journal of Climatology,35,2608-2619.
  16. Huang, W. R.,Huang, P. H.,Chang, Y. H.,Cheng, C. T.,Hsu, H. H.,Tu, C. Y.,Kitoh, A.(2019).Dynamical downscaling simulation and future projection of extreme precipitation activities in Taiwan during the Mei-Yu seasons.Journal of the Meteorological Society of Japan,97,481-499.
  17. Huffman, G. J.,Adler, R. F.,Bolvin, D. T.,Gu, G. J.,Nelkin, E. J.,Bowman, K. P.,Hong, Y.,Stocker, E. F.,Wolff, D. B.(2007).The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.Journal of Hydrometeorology,8,38-55.
  18. Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, S. Sorooshian, J. Tan, and P. Xie, 2017. NASA global precipitation measurement (GPM) integrated multi-SatellitE retrievals for GPM (IMERG). Algorithm theoretical basis document (ATBD) version 5.1. About this paper. https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1.pdf (last accessed 29 November 2011).
  19. Huffman, G. J., D. T. Bolvin, and E. J. Nelkin. 2015. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation. About this paper. https://pdfs.semanticscholar.org/2d8a/bf1781e480c01 b5a52241abe9acfaf3a9dbd.pdf?_ga=2.206374999.532751673.1575016329-2043239162.1566291235 (last accessed 29 November 2011).
  20. Joyce, R. J.,Janowiak, J. E.,Arkin, P. A.,Xie, P.(2004).CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.Journal of Hydrometeorology,5,487-503.
  21. Kidd, C.,Huffman, G.(2011).Global precipitation measurement.Meteorological Applications,18,334-353.
  22. Kirstetter, O. S.(2018).Evaluation of diurnal variation of GPM IMERG derived summer precipitation over the contiguous US using MRMS data.Quarterly Journal of the Royal Meteorological Society,144(S1),270-281.
  23. Levizzani, V.(ed.),Bauer, P.(ed.),Turk, F. J.(ed.)(2007).Measuring precipitation from space.Dordrecht:Springer.
  24. Li, Z.,Yang, D.,Hong, Y.(2013).Multi-scale evaluation of high resolution multi-sensor blended global precipitation products over the Yangtze River.Journal of Hydrology,500,157-169.
  25. Lin, P. F.,Chang, P. L.,Jou, B. J. D.,Wilson, J. W.,Roberts, R. D.(2011).Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island.Weather and Forecasting,26,44-60.
  26. Lin, P. F.,Chang, P. L.,Jou, B. J. D.,Wilson, J. W.,Roberts, R. D.(2012).Objective prediction of warm season afternoon thunderstorms in Northern Taiwan using a fuzzy logic approach.Weather and Forecasting,27,1178-1197.
  27. Mao, J.,Wu, G.(2012).Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data.Science China Earth Sciences,55,554-566.
  28. Negri, A. J.,Adler, R. F.(1993).An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters.Journal of Applied Meteorology and Climatology,32,357-373.
  29. Ning, S.,Song, F.,Udmale, P.,Jin, J.,Thapa, B. R.,Ishidaira, H.(2017).Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China.Advances in Meteorology,1-16.
  30. Ning, S.,Wang, J.,Jin, J.,Ishidaira, H.(2016).Assessment of the latest GPM-Era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese Mainland.Water,8,481.
  31. O, S.,Foelsche, U.,Kirchengast, G.,Fuchsberger, J.,Tan, J.,Petersen, W. A.(2017).Evaluation of GPM IMERG Early, Late, and Final rainfall estimates with WegenerNet gauge data in southeast Austria.Hydrology and Earth System Sciences,21,6559-6572.
  32. Petkovic, V.,Kummerow, C. D.(2015).Performance of the GPM passive microwave retrieval in the Balkan flood event of 2014.Journal of Hydrometeorology,16,2501-2518.
  33. Prakash, S.,Mitra, A. K.,AghaKouchak, A.,Liu, Z.,Norouzi, H.,Pai, D. S.(2018).A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region.Journal of Hydrology,556,865-876.
  34. Prakash, S.,Mitra, A. K.,Pai, D. S.,AghaKouchak, A.(2016).From TRMM to GPM: How well can heavy rainfall be detected from space?.Advances in Water Resources,88,1-7.
  35. Robber, P. J.(2009).Notes and correspondence – Visualizing multiple measures of forecast quality.Weather and Forecasting,24,601-608.
  36. Sahlu, D.,Nikolopoulos, E. I.,Moges, S. A.,Anagnostou, E. N.,Hailu, D.(2016).First evaluation of the day-1 IMERG over the upper Blue Nile Basin.Journal of Hydrometeorology,17,2875-2882.
  37. Shige, S.,Kida, S.,Ashiwake, H.,Kubota, T.,Aonashi, K.(2013).Improvement of TMI rain retrievals in mountainous areas.Journal of Applied Meteorology and Climatology,52,242-254.
  38. Storch, H. V.,Zwiersm F. W.(1999).Statistical analysis in climate research.Cambridge:Cambridge University Press.
  39. Sun, Q.,Miao, C.,Duan, Q.,Ashouri, H.,Sorooshian, S.,Hsu, K. L.(2018).A review of global precipitation data sets: Data sources, estimation, and intercomparisons.Reviews of Geophysics,56,79-107.
  40. Tan, M. L.,Duan, Z.(2017).Assessment of GPM and TRMM precipitation products over Singapore.Remote Sensing,9,720.
  41. Tan, M. L.,Ibrahim, A. L.,Duan, Z.,Cracknell, A. P.,Chaplot, V.(2015).Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia.Remote Sensing,7,1504-1528.
  42. Tang, G.,Zeng, Z.,Long, D.,Guo, X.,Yong, B.,Zhang, W.,Hong, Y.(2016).Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?.Journal of Hydrometeorology,17,121-137.
  43. Wang, R.,Chen, J.,Wang, X.(2017).Comparison of IMERG Level-3 and TMPA 3B42V7 in Estimating Typhoon-Related Heavy Rain.Water,9,276.
  44. Wen, Y. X.,Behrangi, A.,Lambrigtsen, B.,Kirstetter, P. E.(2016).Evaluation and uncertainty estimation of the latest radar and satellite snowfall products using SNOTEL measurements over mountainous regions in western United States.Remote Sensing,8,904.
  45. Wilks, D. S.(1995).Statistical methods in the atmospheric sciences: An introduction.San Diego, California:Academic Press.
  46. Yamamoto, M. K.,Shige, S.,Yu, C. K.,Cheng, L. W.(2017).Further improvement of the heavy orographic rainfall retrievals in the GSMaP Algorithm for Microwave Radiometers.Journal of Applied Meteorology and Climatology,56,2607-2619.
  47. Yang, Y.,Tang, G.,Lei, X.,Hong, Y.,Yang, N.(2018).Can satellite precipitation products estimate probable maximum precipitation: A comparative investigation with gauge data in the Dadu River Basin.Remote Sensing,10,41.
  48. Yang, Z.,Hsu, K.,Sorooshian, S.,Xu, X.,Braithwaite, D.,Verbist, K. M.(2016).Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile.Journal of Geophysical Research Atmospheres,121,3790-3806.
  49. Yeh, N. C.,Chuang, Y. C.,Peng, H. S.,Hsu, K. L.(2019).Bias adjustment of satellite precipitation estimation using ground-based observation: Mei-Yu front case studies in Taiwan.Asia-Pacific Journal of Atmospheric Sciences,56,485-492.
  50. 洪景山, J. S.,曹嘉宏, J. H.(2011)。利用Cressman 客觀分析法於網格化臺灣自動雨量觀測資料之探討。大氣科學,39(3),201-214。
  51. 張鳳茹, F. R.,黃婉如, W. R.,王重傑, C. C.(2015)。長期氣候變遷對長江流域暖季東移雨帶的影響與評估。大氣科學,43(4),265-284。
  52. 陳冠杰, K. C.,黃婉如, W. R.(2016)。中央氣象局全球預報模式對2016 年5-6 月東亞區域降雨之預報能力評析。大氣科學,44(4),205-236。
  53. 陳思穎, S. Y.,黃婉如, W. R.(2017)。TRMM、CMORPH、PERSIANN 三組衛星資料對臺灣降雨日變化特色的表現能力評估。大氣科學,45(2),167-192。
  54. 蔡玫紜, M. Y.,黃婉如, W. R.(2017)。30-60 天季內振盪現象對臺灣夏季降雨特色的影響。大氣科學,45(3),239-260。