题名

Choice of the Bandwidth Ratio in Rice's Boundary Modification

DOI

10.29973/JCSA.200609.0002

作者

Ming-Yen Cheng

关键词

boundary effect ; boundary kernel ; exact mean squared error ; kernel smoothing ; local linear smoothing

期刊名称

中國統計學報

卷期/出版年月

44卷3期(2006 / 09 / 01)

页次

235 - 251

内容语文

英文

英文摘要

Rice (1984) proposed a boundary modified kernel regression method which linearly combines two kernel regression estimators based on different bandwidths. In the context of density estimation, advantages of this method over two other popular approaches, local linear fitting and the boundary kernels of Müller (1991), are discussed. Selection of the ratio of the two bandwidths is studied. Asymptotic and exact mean squared errors are provided as tools to analyze the problem. In the case of Normal kernels, keeping the bandwidth ratio fixed, for ease and speed of implementation, and a specific bandwidth ratio are suggested.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Aldershof, B.,Marron, J. S.,Park, B. U.,Wand, M. P.(1992).Facts about the Gaussian probability density function.Manuscript.
  2. Cheng, M.-Y.(1997).Boundary aware estimators of integrated density derivative products.J. Roy. Statist. Soc. Ser. B.,59,191-203.
  3. Fan, J.(1993).Local linear regression smoothers and their minimax efficiency.Ann. Statist.,21,196-216.
  4. Fan, J.,Gijbels, I.(1992).Variable bandwidth and local linear regression smoothers.Ann. Statist.,20,2008-2036.
  5. Fan, J.,Marron, J. S.(1994).Fast implementation of nonparametric curve estimators.J. Computat. Graph. Statist.,3,35-56.
  6. Gasser, Th.,Müller, H. G.(1979).Lecture Notes in Mathematics.New York:Springer.
  7. Gasser, Th.,Müller, H. G.,Mammitzsch, V.(1985).Kernels for nonparametric curve estimation.J. Roy. Statist. Soc. Ser. B,47,238-252.
  8. Granovsky, B. L.,Müller, H. G.(1991).Optimizing kernel methods: A unifying variational principle.Internat. Statist. Rev.,59,373-388.
  9. Jones, M. C.(1993).Simple boundary correction for kernel density estimation.Statist. Comput.,3,135-146.
  10. Lejeune, M.,Sarda, P.(1992).Smooth estimators of distribution and density functions.Comput. Statist. Data Anal.,14,457-471.
  11. Marron, J. S.,Nolan, D.(1989).Canonical kernels for density estimation.Statist. Probab. Lett.,7,195-199.
  12. Marron, J. S.,Ruppert, D.(1994).Transformations to reduce boundary bias in kernel density estimation.J. Roy. Statist. Soc. Ser. B,56,653-671.
  13. Marron, J. S.,Wand, M. P.(1992).Exact mean squared error.Ann. Statist.,20,712-736.
  14. Müller, H. G.(1991).Smooth optimum kernel estimators near endpoints.Biometrika,78,521-530.
  15. Rice, J.(1984).Boundary modification for kernel regression.Comm. Statist. A-Theory Methods,13,893-900.
  16. Schucany, W. R.,Sommers, J. P.(1977).Improvement of kernel type density estimators.J. Amer. Statist. Assoc.,72,420-423.
  17. Schuster, S. J.(1985).Incorporating support constraints into nonparametric estimators of densities.Comm. Statist. A-Theory Methods,14,1123-1136.