题名

The Local Linear M-Estimator with a Robust Initial Estimate

DOI

10.29973/JCSA.200612.0003

作者

Ruey-Ching Hwang;Wen-Shuenn Deng;Chih-Kang Chu

关键词

local linear estimator ; local linear M-estimator ; Newton method ; nonparametric regression ; robust initial estimate ; robustness

期刊名称

中國統計學報

卷期/出版年月

44卷4期(2006 / 12 / 01)

页次

382 - 401

内容语文

英文

英文摘要

In the field of nonparametric regression, the local linear M-estimator (LLM; Fan and Jiang 1999) is proposed to adjust for the unrobustness of the local linear estimator (LLE; Fan 1992, 1993). In practice, the LLM is often computed using Newton method together with an initial estimate produced by the LLE. However, by the unrobustness of the LLE, such initial estimate might be far from the global minimizer of M function. In this case, the Newton method might provide an incorrect solution for the LLM. To improve the drawback, a robust initial estimate for Newton method is proposed. Simulation results show that our robust initial estimate is useful when using Newton method to find a solution for the LLM.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Besl, P.J.,Birch, J.B.,Watson, L.T.(1989).Robust window operators.Machine Vision and Applications,2,179-191.
  2. Cleveland, W.S.(1979).Robust locally weighted regression and smoothing scatterplots.Journal of the American Statistical Association,74,829-836.
  3. Donoho, D.L.,Johnstone, I.M.(1994).Ideal spatial adaptation by wavelet shrinkage.Biometrika,81,425-455.
  4. Eubank, R.L.(1988).Spline Smoothing and Nonparametric Regression.New York:Marcel Dekker.
  5. Fan, J.(1992).Design-adaptive nonparametric regression.Journal of the American Statistical Association,87,998-1004.
  6. Fan, J.(1993).Local linear regression smoothers and their minimax efficiencies.Annals of Statistics,21,196-216.
  7. Fan, J.,Gasser, T.,Gijbels, I.,Brookmann, M.,Engels, J.(1993).Discussion paper.Belgium:Institut de Statistique, Universite Catholique de Louvain.
  8. Fan, J.,Gijbels, I.(1995).Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation.Journal of the Royal Statistical Society,57,371-394.
  9. Fan, J.,Gijbels, I.(1996).Local Polynomial Modeling and Its Application-Theory and Methodologies.New York:Chapman and Hall.
  10. Fan, J.,Hu, T.,Truong, Y.(1994).Robust non-parametric function estimation.Scandinavian Journal of Statistics,21,433-446.
  11. Fan, J.,Jiang, J.(1999).Variable bandwidth and one-step local.MScience in China, Ser. A,29,1-15.
  12. Hample, F.,Ronchetti, E.,Rousseeuw, P.,Stahel, W.(1986).Robust Statistics: The Approach Based on Influence Functions.New York:Wiley.
  13. Härdle, W.(1990).Applied Nonparametric Regression.Cambridge:Cambridge University Press.
  14. Härdle, W.(1991).Smoothing Techniques: With Implementation in S. Springer.Berlin:
  15. Härdle, W.,Gasser, T.(1984).Robust nonparametric function fitting.Journal of the Royal Statistical Society, Ser. B,46,42-51.
  16. Huber, P.J.(1981).Robust Statistics.New York:Wiley.
  17. Marron, J.S.,Wand, M.P.(1992).Exact mean integrated squared error.Annals of Statistics,20,712-736.
  18. Müller, H.G.(1988).Lecture Notes in Statistics.Berlin:Springer-Verlag.
  19. Rousseeuw, P.J.,Leroy, A.M.(1987).Robust Regression and Outlier Detection.New York:Wiley.
  20. Scott, D.W.(1992).Multivariate Density Estimation: Theory, Practice, and Visualization.New York:Wiley.
  21. Simonoff, J.S.(1996).Smoothing Methods in Statistics.New York:Springer.
  22. Tsybakov, A.B.(1986).Robust reconstruction of functions by the local approximation.Problems of Information Transformation,22,133-146.
  23. Wand, M.P.,Jones, M.C.(1995).Kernel Smoothing.London:Chapman and Hall.