题名

A Bootstrap Method to Calculate Value-At-Risk in Emerging Markets under Stochastic Volatility Models

DOI

10.29973/JCSA.200706.0001

作者

Cheng-Der Fuh;Yu-Lin Yang

关键词

Bootstrap ; emerging markets ; Value-at-Risk ; stochastic volatility ; EM algorithm

期刊名称

中國統計學報

卷期/出版年月

45卷2期(2007 / 06 / 01)

页次

106 - 129

内容语文

英文

英文摘要

These days, risk management is an important issue. A standard benchmark used to measure and to manage market risks is the Value-at-Risk (VaR). Since emerging markets have drawn considerable interest in recent years, this article applies the bootstrap method to calculate the VaR estimate of nine emerging market stock indices. We also examine the US S&P 500 composite index and MSCI EM (Emerging Markets) Index for comparison. Simulation results show that the VaR estimate is not far from the true VaR. A back-test shows that stochastic volatility models with ε~N(0, 1) or ~t(6) or ~t(4) can fit the different indices examined in this article. The VaR estimates are relatively high in Turkey, India, Mexico, Russia and Indonesia; while Thailand, Korea, Taiwan and Malaysia have relatively low VaR estimates. As we expect, the S&P 500 index has a relatively low VaR estimate. However, the fact that the MSCI EM Index has a relatively high VaR estimate indicates that the diversification effects are not significant between emerging markets.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Allen, M.(1994).Building a Role Model.Risk,7,73-80.
  2. Bao, Y.,T. H. Lee,B. Saltoglu(2006).Evaluating Predictive Performance of Value-at-Risk Models in Emerging Markets: A Reality Check.Journal of Forecasting,25,101-128.
  3. Beder, T.(1995).VaR: Seductive but Dangerous.Financial Analysts Journal,51,12-24.
  4. Bekaert, G.,C. R. Harvey(1997).Emerging Equity Market Volatility.Journal of Financial Economics,43,29-77.
  5. Cappé, O.,E. Moulines,T. Rydén(2005).Inference in Hidden Markov Models.Springer.
  6. Duffie, D.,J. Pan(1997).An Overview of Value at Risk.The Journal of Derivatives,4,7-47.
  7. Efron, B.,R. J. Tibshirani(1993).An Introduction to the Bootstrap.Chapman and Hall/CRC.
  8. Harvey, A. C.(1989).Forecasting, Structural Time Series Models and the Kalman Filter.Cambridge University Press.
  9. Harvey, C. R.(1995).Predictable Risk and Returns in Emerging Markets.The Review of Financial Studies,8,773-816.
  10. Ho, L. C.,P. Burridge,J. Cadle,M. Theobald(2000).Value-at-risk: Applying the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil.Pacific-Basin Finance Journal,8,249-275.
  11. Huisman, R.,K. G. Koedijk,R. A. J. Pownall(1998).VaR-x: Fat Tails in Financial Risk Management.Journal of Risk,1,47-61.
  12. Hull, J.,A. White(1998).Value at Risk when Daily Changes in Market Variables are not Normally Distributed.Journal of Derivatives,5,9-19.
  13. Jackson, P.,D. J. Maude,W. Perraudin(1998).Testing Value at Risk Approaches to Capital Adequacy.Bank of England Quarterly Bulletin,38,256-266.
  14. Jorion, P.(2000).Value at Risk.McGraw Hill.
  15. Kupiec, P. H.(1995).Techniques for Verifying the Accuracy of Risk Measurement Models.Journal of Derivatives,2,73-84.
  16. Liesenfeld, R.,R. C. Jung(2000).Stochastic Volatility Models: Conditional Normality versus Heavy-Tailed Distributions.Journal of Applied Econometrics,15,137-160.
  17. Ruiz, E.(1994).Quasi-maximum Likelihood Estimation of Stochastic Volatility Models.Journal of Econometrics,63,289-306.
  18. So, M. K. P.,W. K. Li,K. Lam(1997).Multivariate Modelling of the Autoregressive Random Variance Process.Journal of Time Series Analysis,18,429-446.
  19. Taylor, S. J.(1986).Modelling Financial Time Series.Wiley.