题名

三因子BGM模型下匯率連動固定期利率交換商品之評價

并列篇名

A Valuation of Quanto Constant Maturity Swap Products under the Three-Factor BGM Model

DOI

10.29973/JCSA.201106.0002

作者

廖四郎(Szu-Lang Liao);楊繡碧(Hsiu-Pi Yang);蔡宏彬(Hung-Pin Tsai)

关键词

匯率連動固定期利率交換 ; Quanto CMS利差選擇權 ; Quanto CMS輪棘選擇權 ; 三因子BGM模型 ; 蒙地卡羅模擬法 ; Quanto CMS ; Quanto CMS Spread option ; Quanto CMS ratchet option ; three-factor BGM model ; Monte Carlo simulation

期刊名称

中國統計學報

卷期/出版年月

49卷2期(2011 / 06 / 01)

页次

60 - 81

内容语文

繁體中文

中文摘要

匯率連動固定期利率交換(Quanto Constant Maturity Swaps,以下簡稱Quanto CMS)商品可做爲管理國外利率交換利差風險的輔助工具。以往對Quanto CMS商品的評價通常是利用蒙地卡羅模擬法(Monte Carlo Simulation)來模擬進行,但這樣的評價方式通常較耗時。本文應用國外遠期交換利率近似於國外遠期LIBOR利率之線性組合的特徵來設定BGM模型下國外遠期交換利率的近似動態過程。基於國外遠期交換利率的近似動態,本文推導出三因子BGM模型下評價Quanto CMS利差選擇權(Quanto Constant Maturity Swaps Spread Option)及Quanto CMS輪棘選擇權(Quanto Constant Maturity Swaps Ratchet Option)的近似解析公式。數值分析的結果顯示上述兩種商品在不同履約價下近似解析公式解法對應蒙地卡羅模擬法的相對誤差都很小且近似解析公式解法之計算時間遠少於蒙地卡羅模擬法。

英文摘要

Quanto constant maturity swaps (Quanto CMS) products can be used to manage the spread risk of foreign interest rate swap. Monte Carlo simulation is usually used to evaluate Quanto CMS products, but it's often time consuming to use Monte Carlo simulation method. In this paper we derive an approximated dynamic process of the foreign forward swap rate under the three-factor BGM model with the characteristic which the foreign forward swap rate is approximated to the linear combination of the foreign forward LIBOR rate. We use no-arbitrage analytical formula to evaluate Quanto CMS products under the three-factor BGM model. Then we apply this approximated formula to evaluate Quanto CMS Spread option and Quanto CMS Ratchet option. The numerical analysis shows that the relative errors between the Monte Carlo simulations and the approximated analytic formulas are very small for the both examined option products. Moreover, the calculation time of the analytic formulas method is much smaller than the Monte Carlo simulation method for both products.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Liao, S. L.,Lin, S. K.,Tsai, H. P.(2010).An efficient valuation and hedging of constant maturity swap products under BGM model.Journal of the Chinese Statistical Association,48,161-189.
    連結:
  2. Brace, A.,Gatarek, D.,Musiela, M.(1997).The market model of interest rate dynamics.Mathematical Finance,7,127-155.
  3. Brigo, D.,Mercurio, F.(2006).Interest Rate Models: Theory and Practice.New York:Springer Verlag.
  4. Hull, J.,White, A.(1999).Forward rate volatilities, Swap rate volatilities, and the implementation of the LIBOR market model.Journal of Fixed Income,10,46-62.
  5. Hunt, P.,Pelsser, A.(1998).Arbitrage-free pricing of quanto-swaptions.The Journal of Financial Engineering,7,25-33.
  6. Hunter, C. J.,Jackel, P.,Joshi, M. S.(2001).Drift approximations in a forward-rate- based LIBOR market model.Risk Magazine,14,1-10.
  7. Jamshidian, F.(1997).LIBOR and swap market model and measure.Finance and Stochastics,1,293-330.
  8. Margrabe, W.(1978).The value of an option to exchange one asset for another.Journal of Finance,33,177-286.
  9. Musiela, M.,Rutkowski, M.(1997).Continuous-time term structure models: a forward measure approach.Finance and Stochastics,1,261-291.
  10. Rebonato, R.(2004).Volatility and Correlation: The Perfect Hedger and the Fox.New York:John Wiley & Sons.