题名

Kolmogorov Equations Driven by Cylindrical Stable Processes and Applications to Stochastic Optimal Control

并列篇名

柱型穩定過程所導出之半線性Kolmogorov方程式及其在隨機最佳化控制的應用

作者

蘇國樑(Kuo-Liang Su)

关键词

Kolmogorov方程式 ; 隨機最佳化控制 ; 柱型α-穩定過程 ; Hamilton-Jacobi-Bellman方程式 ; kolmogorov equation ; stochastic optimal control ; cylindrical α-stable process ; hamilton-jacobi-bellman equation

期刊名称

中國統計學報

卷期/出版年月

52卷3期(2014 / 09 / 01)

页次

335 - 362

内容语文

英文

中文摘要

本文解出柱型α-穩定過程所導出之半線性Kolmogorov方程式在無限維Hilbert空間上的溫和解;其次,解出最佳化控制問題所相關之Hamilton-Jacobi-Bellman方程式的解;然後,說明在隨機控制熱傳導方程式和波動方程式上的最佳化應用。

英文摘要

A mild solution of semilinear Kolmogorov equations driven by a cylindrical α-stable noise is solved in an infinite dimensional Hilbert space. The associated Hamilton-Jacobi-Bellman equation is also studied and solved for applications to the stochastic optimal control problems. It then shows applications to the controlled stochastic heat equation and wave equation.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Applebaum, D.(2009).Lévy processes and stochastic calculus.Cambridge:Cambridge University Press.
  2. Bass, R. F.,Chen, Z.(2006).Systems of equations driven by stable processes.Probab. Theory Relat. Fields,134,175-214.
  3. Bensoussan, A.,Da Prato, G.,Delfour, M. C.,Mitter, S. K.(2007).Representation and Control of Infinite Dimensional Systems.Birkhauser.
  4. Cerrai, S.(2001).Second order PDE's in nite and in nite dimension, A probabilistic approach.Lecture Notes in Mathematics,1762
  5. Da Prato, G.,Zabczyk, J.(2002).Second-Order Partial Differential Equations in Hilbert Spaces.Cambridge:Cambridge University Press.
  6. Da Prato, G.,Zabczyk, J.(1996).Ergodicity for infinite-dimensional systems.Cambridge:Cambridge University Press.
  7. Da Prato, G.,Zabczyk, J.(1992).Stochastic equations in in finite dimensions.Cambridge:Cambridge University Press.
  8. Fuhrman, M.,Tessitore, G.(2002).Nonlinear Kolmogorov equations in infinite-dimensional spaces: the backward stochastic differential equations approach and applications to optimal control.Ann. Probab.,30(3),1397-1465.
  9. Fuhrman, M.,Tessitore, G.(2004).Infinite horizon backward stochastic Differ-ential equations and elliptic equations in Hilbert space.Ann. Probab.,32(1B),607-660.
  10. Goldys, B.,Gozzi, F.(2006).Second order parabolic Hamilton-Jacobi -Bellman equations in Hilbert spaces and stochastic control:L2µ approach.Stochastic Processes and their Applications,116,1932-1963.
  11. Hu, Y.,Tessitore, G.(2007).BSDE on an infinite horizon and elliptic PDEs in infinite dimension.Nonlinear differ. equ. appl.,14,825-846.
  12. Masiero, F.(2008).Stochastic Optimal Control for the Stochastic Heat Equation with Exponentially Growing Coefficients and with Control and Noise on a Subdomain.Stochastic Analysis and Applications,26(4),877-902.
  13. Masiero, F.(2005).Semilinear Kolmogorov equations and applications to stochastic optimal control.Appl. Math. Optim,51(2),201-250.
  14. Masiero, F.(2007).Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces.Electron. J. Probab,12,387-419.
  15. Peszat, E.,Zabczyk, J.(2007).Stochastic Partial Differential Equations with Levy noise.Cambridge:
  16. Priola, E.,Xu, L.,Zabczyk, J.(2011).Exponential mixing for some SPDEs with Lévy noise.Stochastic and Dynamics,11,521-534.
  17. Priola, E.,Zabczyk, J.(2003).Null Controllability with Vanishing Energy.SIAM J. Control Optim,42(3),1013-1032.
  18. Priola, E.,Zabczyk, J.(2011).Structural properties of semilinear SPDEs driven by cylindrical stable processes.Probab. Theory Relat. Fields,149,97-137.
  19. Royden, H. L.,Fitzpatrick, P. M.(2010).Real Analysis.Pearson Education, Inc. Prentice Hall.
  20. Samorodnitsky, G.,Taqqu, M. S.(1994).Stable non-Gaussian random processes. Stochastic models with infinite variance.New York:Chapman and Hall.
  21. Sato, K. I.(1999).Lévy processes and in finite divisible distributions.Cambridge:Cambridge University Press.
  22. Su, K. L.(2010).A Note of Exponential Martingale in Banach Spaces.J. of Business,18,125-138.
  23. Su, K. L.(2012).A Note on Applications of Infinite Dimensional Elliptic PDE to In nite Horizon Control Problems.J. of Business,20,257-274.
  24. Su, K. L.(2011).A Note of Girsanov's Theorem in Banach Spaces.J. of Business,19,133-148.
  25. Van Neerven, J. M. A. M.(2008).Stochastic Evolution Equation.Lecture Notes of the 11th Internet Seminar 2007/08