题名

A BAYESIAN ANALYSIS FOR ROBUST PARAMETER DESIGNS WITH ORDINAL RESPONSES

并列篇名

具有有序資料的穩健參數設計實驗之貝氏分析

作者

俞一唐(I-Tang Yu);杜維珍(Wei-Chen Tu)

关键词

高斯過程 ; 有序資料 ; 穩健參數設計 ; Gaussian process ; ordinal response ; robust parameter design

期刊名称

中國統計學報

卷期/出版年月

54卷1期(2016 / 03 / 01)

页次

26 - 42

内容语文

英文

中文摘要

在本文中, 我們提供了一個貝氏方法來分析反應值為有序資料的穩健參數設計實驗。在模型建構方面, 不同於一般常用來分析有序資料的廣義線性模型,我們利用高斯過程來建模。而在最佳化的部分, 我們使用貝氏預測法來進行最佳因子設定的篩選。最後, 我們利用本文所提的方法分析了一筆實際的實驗資料, 從資料分析中我們發現當因子間具有複雜之交互作用時, 我們所提出的方法會比利用廣義線性模型更能得到一個可靠的結果。

英文摘要

In this work, we propose a Bayesian method to analyze robust parameter design experiments with ordinal responses. Instead of generalized linear models, we use a Gaussian process model on the latent variable representation of cumulative regression models. The optimization is then implemented based on the Bayesian predictive approach. The Bayesian Gaussian process model approach is illustrated by analyzing the foam experiment. From the analysis, we conclude that our approach can obtain a more reliable result than generalized-linear-model based approaches when complex interactions are present.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Agresti, A.(2010).Analysis of Ordinal Categorical Data.Hobbken:John Wiley & Sons.
  2. Albert, J.,Chib, S.(1993).Bayesian analysis of binary and poly-chotomous response data.Journal of the American Statistical Association,88,669-679.
  3. Bradlow, E.T.,Zaslavsky A.M.(1999).A hierarchical latent variable model for ordinal data from a customer satisfaction survey with "no answer" responses.Journal of the American Statistical Association,94,43-52.
  4. Chipman, H.(1998).Handling uncertainty in analysis of robust design experiments.Journal of Quality Technology,30,11-17.
  5. Chipman, H.,Hamada, M.(1996).A Bayesian approach for analyzing ordinal data from industrial experiments.Technometrics,38,1-10.
  6. Conti, S.,Gosling, J.P.,Oakley J.E.,OHagan, A.(2009).Gaussian process emulation of dynamic computer codes.Biometrika,96,663-676.
  7. Diggle, P.J.,Ribeior, P.J.Jr.(2007).Model-based Geostatistics.New York:Springer.
  8. Handcock, M.S.,Stein, M.L.(1993).A Bayesian Analysis of Kriging.Technometrics,33,403-410.
  9. Jinks, J.(1987).Reduction of voids in a urethane-foam product.Fifth Symposium on Taguchi Methods,Dearborn, MI:
  10. Johnson, V.E.(1996).On Bayesian analysis of multirater ordinal data: an application to automated essay grading.Journal of the American Statistical Association,91,42-51.
  11. Johnson, V.E.,Albert, J.H.(1999).Ordinal Data Modeling.New York:Springer.
  12. Joseph, V.R.(2006).A Bayesian approach to the design and analysis of fractionated experiments.Technometrics,48,219-229.
  13. Lee, Y.,Nelder, J.A.(2003).Robust design via generalized linear models.Journal of Quality Technology,35,2-12.
  14. Liu, I.,Agresti, A.(2005).The analysis of ordered categorical data: An overview and a survey of recent developments.Test,14,1-73.
  15. McCullagh, P.,Nelder, J.A.(1989).Generalized Linear Models.New York:Chapman & Hall.
  16. Miro-Quesada, G.,Del Castillob E.,Peterson, J.J.(2004).A Bayesian approach for multiple response surface optimization in the presence of noise variables.Journal of Applied Statistics,31,251-270.
  17. Myers, R.H.,Brenneman, W.A.,Myers, W.R.(2005).A dual response approach to robust parameter design for a generalized linear model.Journal of Quality Technology,37,130-138.
  18. Nair, V.N.(1992).Taguchi's parameter design: a panel discussion.Technometrics,34,127-161.
  19. Parsons, N.R.,Costa, M.L.,Achten, J. ,Stallard, N.(2009).Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R..Computational statistics & data analysis,53,632-641.
  20. Peterson, J.J.(2004).A posteior predictive approach to multiple response surface optimization.Journal of Quality Technology,36,139-153.
  21. Robinson, T.J.,Borror, C.M.,Myers, R.H.(2004).Robust parameter design: a review.Quality and Reliability Engineering International,20,81-101.
  22. Robinson, T.J.,Pintar, A.L.,Anderson-Cook, C.M.,Hamada, M.S.(2012).A Bayesian approach to the analysis of split-plot combined and product arrays and optimization in robust parameter design.Journal of Quality Technology,44,304-320.
  23. Santner, T.J.,Williams, B.J.,Notz, W.I.(2003).The Design and Analysis of Computer Experiments.New York:Springer.
  24. Silvapulle, M.J.(1981).On the existence of maximum likelihood estimators of the binomial response model.Journal of the Royal Statistical Society. Series B,43,310-313.
  25. Spanos, C.J.,Chen, R.L.(1997).Using qualitative observations for process tuning and control.IEEE Transactions on Semiconductor Manufacturing,10,307-316.
  26. Vining, G.G.,Myers, R.H.(1990).Combining Taguchi and response surface philosophy: a dual response approach.Journal of Quality Technology,22,38-45.
  27. Wu, C.F.J.,Hamada, M.(2009).Experiments: Planning, Analysis, and Parameter Design Optimization.Hobbken:John Wiley & Sons.
  28. Yu, I-T.,Joseph, V.R.(2011).Bayesian process optimization using failure amplification method.Applied Stochastic Models in Business and Industry,27,402-409.