题名

Smoothing Spline Estimation for Skew-Symmetric Density Functions

并列篇名

偏斜化對稱分佈函數之曲線平滑估計

作者

張升懋(Sheng-Mao Chang);蘇南誠(Nan-Cheng Su);嵇允嬋(Yunchan Chi)

关键词

Approximate cross validation ; Profile likelihood ; Skew-normal distribution ; Skew-symmetric distribution ; Smoothing spline ; 近似交叉驗證 ; 剖面概似函數 ; 偏斜化對稱分佈函數 ; 曲線平滑估計

期刊名称

中國統計學報

卷期/出版年月

58卷1期(2020 / 03 / 01)

页次

23 - 44

内容语文

英文

中文摘要

The location-scale skew-symmetric distribution, consisting of two parts: a symmetric density function and a skew function, is attracting increasing attention, especially when observed data are obviously asymmetric. In this article, given the location and the scale parameter, we propose a smoothing spline estimation of the skew function, and then apply a profile likelihood approach to estimate the location and the scale. Moreover, an approximate cross-validation is derived to estimate relative Kullback-Leibler distances to alleviate the computation burden in choosing an optimal smoothing parameter for smoothing spline modeling. The proposed skew function estimator is twice differentiable and hence a Newton approach can be applied to find the maximum profile likelihood estimation. The performance of the proposed approach was examined by simulation and real data examples.

英文摘要

當資料呈現非對稱分佈時,考慮有關位置尺度族之偏斜化對稱分佈是一可行的方法。位置尺度族偏斜化對稱分佈函數由二部份組成,其一是一屬於尺度族的對稱分佈函數,其二則是一偏斜函數。本文採用最大化剖面概似函數方法估計位置及尺度參數,用無母數方法中之曲線平滑方法估計偏斜函數。此外,我們亦推導出相對Kullback-Leibler距離,用以簡化使用資料交叉驗證的計算量。對於曲線平滑方法,本文使用的核函數是二次可微,所以文獻上的大樣本性質及計算估計量的演算法得以套用。我們最後以電腦模擬及二個實證分析來展示本文所提出方法之可用性。

主题分类 基礎與應用科學 > 統計
参考文献
  1. Arellano-Valle, R.B.,Gómez, H.W.,Quintana, F.A.(2004).A new class of skew-normal distributions.Commun. Statist. Theory Meth,33,1975-1991.
  2. Arnold, B.C.,Lin, G.D.(2004).Characterizations of the skew-normal and generalized chi distributions.Sankhyā,66,593-606.
  3. Azzalini, A.(1985).A class of distributions which includes the normal ones.Scand. J. Stat,12,171-178.
  4. Azzalini, A.,Capitanio, A.(2003).Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution.J. Roy. Soc. Ser. B,65,367-389.
  5. Cook, R.D.,Weisberg, S.(2005).An Introduction to Regression Graphics.NY:Wiley.
  6. Fredric, P.(2011).Modeling skew-symmetric distributions using B-spline and penalties.J Stat. Plan Infer,141,2878-2890.
  7. Genton, M.G.(2004).Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality.Boca Raton, FL:Chapman & Hall/CRC.
  8. Gu, C.(2002).Smoothing Spline ANOVA Models.
  9. Gupta, A.K.,Chang, F.C.,Huang, W.J.(2002).Some skew-symmetric models.Random Oper. and Stoch. Equ,10,133-140.
  10. Ma, Y.,Genton, M.G.(2004).A flexible class of skew-symmetric distributions.Scand. J. Statist,31,459-468.
  11. Ma, Y.,Genton, M.G.,Tsiatis, A.A.(2005).Locally efficient semiparametric estimators for generalized skew-elliptical distributions.J. Am. Stat. Assoc.,100,980-989.
  12. Ma, Y.,Hart, J.D.(2007).Constrained local likelihood estimators for semiparametric skew-normal distributions.Biometrika,94,119-134.
  13. Miyata, S.,Shen, X.(2005).Free-knot splines and adaptive knot selection.Journal of Japanese Statistical Society,35,303-324.
  14. Molinari, N.,Durand, J.,Sabatier, R.(2004).Bounded optimal knots for regression splines.Comput. Stat. Data An,45,159-178.
  15. Murphy, S.A.,van der Vaar, A.W.(2000).On profile likelihood.J. Am. Stat. Assoc,95,449-465.
  16. Nadarajah, S.,Kotz, S.(2003).Skewed distributions generated by the normal kernel.Statist. Prob. Lett,65,269-277.
  17. Nadarajah, S.,Kotz, S.(2006).Skew distributions generated from different families.Acta App. Math.,91,1-37.
  18. Rao, C.R.(1985).Weighted Distributions Arising Out of Methods of Ascertainment: What Populations Does a Sample Represent?.a Celebration of Statistics: The ISI Centenary Volume,New York:
  19. Ryan, T.A., Jr.,Joiner, B.L.,Ryan, B.F.(1985).The Minitab Student Handbook.Boston:Duxbery Press.
  20. Van de Geer, S.A.(2000).Empirical Processes in M-Estimation.U.K.:Cambridge University Press.
  21. Wahba, G.(1990).Spline Models for Observational Data,Philadelphia:
  22. Wang, J.,Boyer, J.,Genton, M.G.(2004).A skew-symmetric representation of multivariate distributions.Stat. Sinica,14,1259-1270.