参考文献
|
-
Ahmad, I.,Leelahanon, S.,Li, Q.(2005).Efficient estimation of a semiparametric partially linear varying coefficient model.The Annals of Statistics,33(1),258-283.
-
Brunsdon, C.,Fotheringham, A. S.,Charlton, M. E.(1998).Geographically weighted regression.Journal of the Royal Statistical Society: Series D (The Statistician),47(3),431-443.
-
Brunsdon, C.,Fotheringham, A. S.,Charlton, M. E.(1996).Geographically weighted regression: A method for exploring spatial nonstationarity.Geographical Analysis,28(4),281-298.
-
Fan, J.,Huang, T.(2005).Profile likelihood inferences on semiparametric varying-coefficient partially linear models.Bernoulli,11(6),1031-1057.
-
Fotheringham, A. S.,Brunsdon, C.,Charlton, M. E.(2002).Geographically Weighted Regression: The Analysis of Spatially Varying Relationships.John Wiley & Sons.
-
Gelfand, A. E.,Kim, H.-J.,Sirmans, C. F.,Banerjee, S.(2003).Spatial modeling with spatially varying coefficient processes.Journal of the American Statistical Association,98(462),387-396.
-
Gu, L.,Wang, L.,Härdle, W. K. K.,Yang, L.(2014).A simultaneous confidence corridor for varying coefficient regression with sparse functional data.Test,23(4),806-843.
-
Hastie, T.,Tibshirani, R.(1993).Varying-coefficient models.Journal of the Royal Statistical Society: Series B (Statistical Methodology),55(4),757-796.
-
Honda, T.,Ing, C.-K.,Wu, W.-Y.(2019).Adaptively weighted group lasso for semiparametric quantile regression models.Bernoulli,25(4B),3311-3338.
-
Huang, J. Z.,Wu, C. O.,Zhou, L.(2004).Polynomial spline estimation and inference for varying coefficient models with longitudinal data.Statistica Sinica,14(3),763-788.
-
Jiang, Q.,Wang H.,Xia, Y.,Jiang, G.(2013).On a principal varying coefficient model.Journal of the American Statistical Association,108(501),228-236.
-
Lai, M. J.,Schumaker, L. L.(2007).Spline functions on triangulations.Cambridge University Press.
-
Lai, M. J.,Wang, L.(2013).Bivariate penalized splines for regression.Statistica Sinica,23(3),1399-1417.
-
Li, X.,Wang, L.,Wang, H. J.(2021).Sparse learning and structure identification for ultra-high-dimensional image-on-scalar regression.Journal of the American Statistical Association,116(536),1994-2008.
-
Liu, J.,Li, R.,Wu, R.(2014).Feature selection for varying coefficient models with ultrahigh-dimensional covariates.Journal of the American Statistical Association,109(505),266-274.
-
Lu, Z.,Tjøstheim, D.,Yao, Q.(2009).Adaptively varying-coefficient spatiotemporal models.Journal of the Royal Statistical Society: Series B,71(4),859-880.
-
Mu, J.,Wang, G.,Wang, L.(2018).Estimation and inference in spatially varying coefficient models.Environmetrics,29(1),e2485.
-
Schumaker, L.(2007).Spline Functions: Basic Theory.Cambridge University Press.
-
Shen, S. L.,Mei, C. L.,Zhang, Y. J.(2011).Spatially varying coefficient models: Testing for spatial heteroscedasticity and reweighting estimation of the coefficients.Environment and Planning A,43(7),1723-1745.
-
Tang, Y.,Wang, H.-J.,Zhu, Z.,Song, X.(2012).A unified variable selection approach for varying coefficient models.Statistica Sinica,22(2),601-628.
-
Tzeng, S.,Huang, H.(2018).Resolution adaptive fixed rank kriging.Technometrics,60(2),198-208.
-
Wang, H. J.,Zhu, Z.,Zhou, J.(2009).Quantile regression in partially linear varying coefficient models.The Annals of Statistics,37(6B),3841-3866.
-
Zhu, H.,Fan, J.,Kong, L.(2014).Spatially varying coefficient model for neuroimaging data with jump discontinuities.Journal of the American Statistical Association,109(507),1084-1098.
|