题名

A Spatial Model Averaging Approach for Predicting the Traffic Flow in Taiwan

并列篇名

基於空間模型平均法的台灣車流量預測

作者

張志浩(Chih-Hao Chang);許湘伶(Hsiang-Ling Hsu);莊穎斌(Ying-Pin Zhuang);楊洪鼎(Hong-Ding Yang)

关键词

Spatial prediction ; Non-stationary covariogram ; Prediction uncertainty ; Prediction variation ; Model averaging ; 空間預測 ; 非穩定態共變異結構 ; 預測不確定性 ; 預測變異 ; 模型平均

期刊名称

中國統計學報

卷期/出版年月

60卷4期(2022 / 12 / 01)

页次

261 - 301

内容语文

英文

中文摘要

When analyzing spatially dependent data with noise, predicting the spatial variables of interest is important. Many spatial prediction methods have been developed, each with its applicable occasion. Therefore, under the unknown mechanism of generating spatial variables of interest, there will be uncertainty in the choice of prediction by a single method. On the other hand, the experimenter will conduct data analysis under the assumption of stationary spatial correlation. However, the spatial correlation of data often does not satisfy stationary, and inferences under inappropriate assumptions may lead to unreasonable conclusions. Therefore, we propose three model average methods for spatial predicting based on the thin-plate smoothing spline and the spatially deformed Kriging predictions. For each model average prediction, the corresponding weight of each candidate prediction will be determined by the prediction variance meter of the candidate prediction methods and has the characteristics of fast computation and local adjustment of coordinates for prediction. After determining the final prediction method based on the simulation results, we analyze Taiwan's provincial highway traffic volume in 2020. We estimated the average daily number of vehicles (Amount) and the passenger car unit (PCU) at each monitoring station. The results illustrate that the uncertainty influence caused by the choice of forecasting method is avoidable, and the predicted performance is improved.

英文摘要

在分析帶有雜訊的空間相依資料時,如何對感興趣之空間變數進行預測是一重要課題。目前有許多空間預測方法已被發展且各自有適用的時機,因此在感興趣之空間變數的產生機制未知之下,由單一方法進行預測將存在預測方法選擇的不確定性。另一方面,常見的分析方法中,實驗者會在穩定態相關性假設之下進行資料分析與後續推論。然而實務上數據的空間相關性時常具有不滿足穩定態之現象,在不合適的假設下進行推論可能導致不合理的結論。因此,我們提出三種基於薄板樣條曲線預測法與空間變形克利金預測法的模型平均預測方法,各預測方法對應之權重是透過前述兩種候選預測法之預測變異數決定並具有計算快速和可隨進行預測之座標局部調整等特性。在透過模擬實驗的結果決定合適的最終預測方法後,我們將其應用於台灣2020年公路交通量分析,分別對各監測站的平均每日各車種總車輛數及標準車當量數進行估計,預期可以避免預測方法選擇所導致的不確定性,進而增進預測表現。

主题分类 基礎與應用科學 > 統計
参考文献
  1. (1981).Down to Earth Statistics: Solutions Looking for Geological Problems.Syracuse University.
  2. Akaike, H.(1973).Information Theory and an Extension of the Maximum Likelihood Principle.2nd International Symposium on Information Theory
  3. Bates, J. M.,Granger, C. W. J.(1969).The Combination of Forecasts.Operational Research Quarterly,20(4),451-468.
  4. Bornn, L.,Shaddick, G.,Zidek, J. V.(2012).Modeling Non-Stationary Processes through Dimension Expansion.Journal of the American Statistical Association,107(497),281-289.
  5. Buckland, S. T.,Burnham, K. P.,Augustin, N. H.(1997).Model Selection: An Integral Part of Inference.Biometrics,53(2),603-618.
  6. Burnham, K. P.,Anderson, D. R.(2002).Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach.Springer.
  7. Chen, C. S.,Yang, H. D.,Li Y(2014).A Stabilized and Versatile Spatial Prediction method for Geostatistical Models.Environmetrics,25(2),127-141.
  8. Chu, T.,Zhu, J.,Wang, H.(2011).Penalized Maximum Likelihood Estimation and Variable Selection in Geostatistics.The Annals of Statistics,39(5),2607-2625.
  9. Craven, P.,Wahba, G.(1978).Smoothing Noisy Data with Spline Functions.Numerische Mathematik,31,377-403.
  10. Cressie, N.(1990).The Origins of Kriging.Mathematical Geology,22,239-252.
  11. Cressie, N.,Johannesson, G.(2008).Fixed Rank Kriging for Very Large Spatial Data Sets.Journal of the Royal Statistical Society: Series B,70(1),209-226.
  12. de Oliveira, R. T.,de Assis, T. F. O.,Firmino, P. R. A.,Ferreira, T. A. E.(2017).Copulas-Based Time Series Combined Forecasters.Information Sciences,376(C),110-124.
  13. de Oliveira, V.,Ferreira, M. A. R.(2011).Maximum Likelihood and Restricted Maximum Likelihood Estimation for a Class of Gaussian Markov Random Fields.Metrika,74(2),167-183.
  14. Diks, C. G. H.,Vrugt, J. A.(2010).Comparison of Point Forecast Accuracy of Model Averaging Methods in Hydrologic Applications.Stochastic Environmental Research and Risk Assessment,24(6),809-820.
  15. Dryden, I. L.,Mardia, K. V.(1998).Statistical shape analysis: With Applications in R.John Wiley & Sons.
  16. Dubrule, O.(1984).Comparing Splines and Kriging.Computers and Geosciences,10(2-3),327-338.
  17. Eom, J. K.,Park, M. S.,Heo, T.-Y.,Huntsinger, L. F.(2006).Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical method.Transportation Research Record,1968(1),20-29.
  18. Fouedjio, F.,Desassis, N.,Romary, T.(2015).Estimation of Space Deformation Model for Non-stationary Random Functions.Spatial Statistics,13,45-61.
  19. Gatrell, A. C.,Bailey, T. C.,Diggle, P. J.,Rowlingson B. S.(1996).Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology.Transactions of the Institute of British Geographers,21(1),256-274.
  20. Granger, C. W. J.,Ramanathan R.(1984).Improved Methods of Combining Forecasts.Journal of Forecasting,3(2),197-204.
  21. Guttorp, P.,Schmidt, A. M.(2013).Covariance Structure of Spatial and Spatial Temporal Processes.Wiley Interdisciplinary Reviews: Computational Statistics,5(4),279-287.
  22. Hansen B. E.(2008).Least-Squares Forecast Averaging.Journal of Econometrics,146(2),342-350.
  23. Hansen, B. E.(2007).Least-Squares Model Averaging.Econometrica,75(4),1175-1189.
  24. Higdon, D.(1998).A Process-Convolution Approach to Modeling Temperatures in the North Atlantic Ocean.Environmental and Ecological Statistics,5(2),173-190.
  25. Hjort, J.,Suomi, J.,Käyhkö J.(2011).Spatial Prediction of Urban-Rural Temperatures Using Statistical Methods.Theoretical and Applied Climatology,106(1-2),139-152.
  26. Hoeting, J. A.,Madigan, D.,Raftery, A. E.,Volinsky, C. T.(1999).Bayesian Model Averaging: A Tutorial.Statistical Science,14(4),382-401.
  27. Huang, H. C.,Chen, C. S.(2007).Optimal Geostatistical Model Selection.Journal of the American Statistical Association,102(479),1009-1024.
  28. Montes-Rojas, G. V.(2012).Optimal Spatial Prediction and the Construction of Regional Indexes.The Journal of Economic Asymmetries,9(1),1-21.
  29. Newman, S.,Reddy, K. R.,DeBusk, W. F.,Wang, Y.,Fisher, M. M.,Shin, G.(1997).Spatial Distribution of Soil Nutrients in a Northern Everglades Marsh: Water Conservation Area 1.Soil Science Society of America Journal,61(4),1275-1283.
  30. Nychka, D.,Wikle, C.,Royle, J. A.(2002).Multiresolution Models for Nonstationary Spatial Covariance Functions.Statistical Modelling,2(4),315-331.
  31. Paciorek, C. J.,Schervish, M. J.(2006).Spatial Modelling Using a New Class of Nonstationary Covariance Functions.Environmetrics,17(5),483-506.
  32. Porcu, E.,Gregori, P.,Mateu, J.(2009).Archimedean Spectral Densities for Nonstationary Space-Time Geostatistics.Statistica Sinica,19,273-286.
  33. Rogers, D. J.,Sedda, L.(2012).Statistical Models for Spatially Explicit Biological Data.Parasitology,139(14),1852-1869.
  34. Sampson, P. D.,Guttorp, P.(1992).Nonparametric Estimation of Nonstationary Spatial Covariance Structure.Journal of the American Statistical Association,87(417),108-119.
  35. Selby, B.,Kockelman, K. M.(2013).Spatial Prediction of Traffic Levels in Unmeasured Locations: Applications of Universal Kriging and Geographically Weighted Regression.Journal of Transport Geography,29,24-32.
  36. Sun, Q.(2020).College Park,University of Maryland College Park.
  37. Taghizadeh-Mehrjardi, R.,Khademi, H.,Khayamim, F.,Zeraatpishen, M.,Heung, B.,Scholten, T.(2022).A Comparison of Model Averaging Techniques to Predict the Spatial Distribution of Soil Properties.Remote Sensing,14(3),472.
  38. Tzeng, S.,Huang, H. C.(2018).Resolution Adaptive Fixed Rank Kriging.Technometrics,60(2),198-208.
  39. Wand, M. P.,Jones, M. C.(1995).Kernel Smoothing.Chapman and Hall.
  40. Wang, X.,Kockelman, K. M.(2009).Forecasting Network Data: Spatial Interpolation of Traffic Counts from Texas Data.Transportation Research Record,2105(1),100-108.
  41. Yang, S.,Zhu, Z.(2015).Variance Estimation and Kriging Prediction for a Class of Non-stationary Spatial Models.Statistica Sinica,25,135-149.
  42. Zamzuri, Z. H.(2016).Selected models for correlated traffic accident count data.AIP Conference Proceedings,1750(1)