题名

偏常態加速破壞衰變模型之貝氏方法

并列篇名

Bayesian Approach for Skew-Normal Accelerated Destructive Degradation Model

作者

陳奕汝(I-Ju Chen);吳裕振(Yuh-Jenn Wu);蔡志群(Chih-Chun Tsai)

关键词

高可靠度產品 ; 加速破壞衰變試驗 ; 偏常態分配 ; Highly reliable products ; Accelerated destructive degradation tests ; Skew-normal distribution

期刊名称

中國統計學報

卷期/出版年月

61卷3期(2023 / 09 / 01)

页次

207 - 230

内容语文

繁體中文;英文

中文摘要

高可靠度產品使用傳統的加速壽命試驗技巧,在給定合理測試時間內,往往無法獲得足夠的失效資料,使得產品壽命推估上造成困難。加速衰變試驗(accelerated degradation test, ADT)測量產品隨著時間衰變的品質特徵值(quality characteristics, QC),藉由這些品質特徵值衰變訊息,可提供較精準的產品壽命推估。某些特定實驗的樣本量測,需經過破壞測試樣本,才可測得其品質特徵值,此加速衰變資料的實驗,稱之加速破壞衰變試驗(accelerated destructive degradation test, ADDT)。針對聚合物材料(polymer material)之ADDT資料,所建構出的非線性偏常態ADDT衰變模型,本文以貝氏方法(Bayesian method),提高估計的精確度,進而有效地估得產品壽命,與描述聚合物材料的衰變路徑。最後以模擬分析方式,與傳統的最大概似估計法(maximum likelihood estimator, MLE)進行比較,來探討所提出模型之參數估計的精準性。

英文摘要

Nowadays, it is difficult to have a precise assessment for the reliability of highly reliable products within a reasonable amount of testing time by using traditional accelerated life tests (ALTs). In such cases, accelerated degradation tests (ADTs) can be conducted to measure the quality characteristics of the products at higher stresses, then the product's reliability at the design stress can be obtained by extrapolation. In some applications, the degradation measurement process would destroy the physical characteristic of tested units, so that only one measurement can be made on each tested unit during the degradation testing. Accelerated degradation tests with such a degradation data are called as accelerated destructive degradation tests (ADDTs). Motivated by polymer data, the article used Bayesian method to improve the precision of the estimation effectively on the nonlinear ADDT degradation model with skew-normal error term that has been proposed to describe the degradation path of the materials. Finally, a simulation study was conducted to compare the performance of the maximum likelihood approach with the Bayesian approach.

主题分类 基礎與應用科學 > 統計
参考文献
  1. Bae, S. J.,Kvam, P. H.(2006).A change-point analysis for modeling incomplete burn-in for light displays.IIE Transactions,38(6),489-498.
  2. Bagdonavicius, V.,Nikulin, M.(2002).Accelerated Life Models : Modeling and Statistical Analysis.United States:Chapman & Hall/CRC.
  3. Brooks, S. P.,Gelman, A.(1998).General methods for monitoring convergence of iterative simulations.Journal of Computational and Graphical Statistics,7(4),434-455.
  4. Duan, Y.,Hong, Y.,Meeker, W. Q.,Stanley, D. L.,Gu, X.(2017).Photodegradation modeling based on laboratory accelerated test data and predictions under outdoor weathering for polymeric materials.Annals of Applied Statistics,11(4),2052-2079.
  5. Escobar, L. A.,Meeker, W. Q.,Kugler, D. L.,Kramer, L. L.(2003).Accelerated destructive degradation tests: data, models, and analysis.Mathematical and Statistical Methods in Reliability
  6. Giorgio, M.,Guida, M.,Postiglione, F.,Pulcini, G.(2018).Bayesian estimation and prediction for the transformed gamma degradation process.Quality and Reliability Engineering International,34(7),1315-1328.
  7. González-Estrada, E.,Cosmes, W.(2020).Shapiro-Wilk test for skew normal distributions based on data transformations.Journal of Statistical Computation and Simulation,89(17),3258-3272.
  8. Guan, Q.,Tang, Y.,Xu, A.(2016).Objective Bayesian analysis accelerated degradation test based on Wiener process models.Applied Mathematical Modelling,40(4),2743-2755.
  9. Guo, J.,Wang, C.,Cabrera, J.,Elsayed, E. A.(2018).Improved inverse Gaussian process and bootstrap: Degradation and reliability metrics.Reliability Engineering and System Safety,178,269-277.
  10. Hsieh, M. H.,Jeng, S. L.(2007).Accelerated discrete degradation models for leakage current of ultra-thin gate oxides.IEEE Transactions on Reliability,56(3),369-380.
  11. Kalbfleisch, J. D.,Prentice, R. I.(2002).Statistical Analysis of Failure Time Data.United States:John Wiley & Sons.
  12. Karagiannis, G.,Konomi, B. A.,Lin, G.(2019).On the Bayesian calibration of expensive computer models with input dependent parameters.Spatial Statistics,34
  13. Lawless, J. F.(2002).Statistical Models and Methods for Lifetime Data.United States:John Wiley & Sons.
  14. Lim, H.,Yum, B. J.(2011).Optimal design of accelerated degradation tests based on Wiener process models.Journal of Applied Statistics,38(2),309-325.
  15. Liu, X.,Tang, L. C.(2010).A Bayesian optimal design for accelerated degradation tests.Quality and Reliability Engineering International,26(8),863-875.
  16. Lu, C. J.,Meeker, W. Q.(1993).Using degradation measures to estimate a time-to-failure distribution.Technometrics,35(2),161-174.
  17. Meeker, W. Q.,Escobar, L. A.(1998).Statistical Methods for Reliability Data.United States:John Wiley & Sons.
  18. Nelson, W.(1990).Accelerated Testing: Statistical Models, Test Plans, and Data Analysis.United States:John Wiley & Sons.
  19. Nelson, W.(1981).Analysis of performance-degradation data from accelerated tests.IEEE Transactions on Reliability,30(2),149-155.
  20. Pan, R.,Crispin, T.(2011).A hierarchical modeling approach to accelerated degradation testing data analysis: a case study.Quality and Reliability Engineering International,27(2),229-237.
  21. Park, J. I.,Bae, S. J.(2010).Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests.IEEE Transactions on Reliability,59(1),74-90.
  22. Peng, C. Y.(2015).Inverse Gaussian processes with random effects and explanatory variables for degradation data.Technometrics,57(1),100-111.
  23. Peng, C. Y.,Tseng, S. T.(2010).Progressive-stress accelerated degradation test for highly-reliable products.IEEE Transactions on Reliability,59(1),30-37.
  24. Shen, Y.,Shen, L.,Xu, W.(2018).A Wiener-based degradation model with logistic distributed measurement errors and remaining useful life estimation.Quality and Reliability Engineering International,34(6),1289-1303.
  25. Shi, Y.,Meeker, W. Q.,Escobar, L. A.(2009).Accelerated destructive degradation test planning.Technometrics,51(1),1-13.
  26. Tsai, C. C.,Lin, C. T.(2015).Lifetime inference for highly reliable products based on skew-normal accelerated destructive degradation test model.IEEE Transactions on Reliability,64(4),1340-1355.
  27. Tsai, C. C.,Tseng, S. T.,Balakrishnan, N.,Lin, C. T.(2013).Optimal design for accelerated destructive degradation tests.Quality Technology and Quantitative Management,10(3),263-276.
  28. Tseng, S. T.,Balakrishnan, N.,Tsai, C. C.(2009).Optimal step-stress accelerated degradation test plan for gamma degradation processes.IEEE Transactions on Reliability,58(4),611-618.
  29. Tseng, S. T.,Hamada, M. S.,Chiao, C. H.(1995).Using degradation data from a fractional factorial experiment to improve fluorescent lamp reliability.Journal of Quality Technology,27(4),363-369.
  30. Tseng, S. T.,Lee, I. C.(2016).Optimum allocation rule for accelerated degradation tests with a class of exponential-dispersion degradation models.Technometrics,58(2),244-254.
  31. Tseng, S. T.,Liao, C. M.(1998).Optimal design for a degradation test.International Journal of Operations and Quantitative Management,4(3),293-301.
  32. Xiao, X.,Ye, Z.(2016).Optimal design for destructive degradation tests with random initial degradation values using the Wiener process.IEEE Transactions on Reliability,65(3),1327-1342.
  33. Xie, Y.,King, C. B.,Hong, Y.,Yang, Q.(2018).Semiparametric models for accelerated destructive degradation test data analysis.Technometrics,60(2),222-234.
  34. Yang, G.(2007).Life Cycle Reliability Engineering.United States:John Wiley & Sons.
  35. Ye, Z. S.,Chen, N.,Shen, Y.(2015).A new class of Wiener process models for degradation analysis.Reliability Engineering and System Safety,139,58-67.
  36. Yu, H. F.(2006).Designing an accelerated degradation experiment with a reciprocal Weibull degradation rate.Journal of Statistical Planning and Inference,136(1),282-297.
  37. Yu, H. F.,Chiao, C. H.(2002).An optimal designed degradation experiment for reliability improvement.IEEE Transactions on Reliability,51(4),427-433.
  38. Zhai, Q.,Chen, P.,Hong, L.,Shen, L.(2018).A random-effects Wiener degradation model based on accelerated failure time.Reliability Engineering and System Safety,180,94-103.