题名

Role of Trading Volume on the Estimation of Dynamic Extreme Value-at-Risk in Futures Markets

并列篇名

交易量在估計期貨市場動態極端風險值的角色

DOI

10.7086/TJAE.201012.0001

作者

黃明祥(Ming-Hsiang Huang);楊永列(Yung-Lieh Yang);黃憲彰(Shian-Chang Huang);陳俊儒(Jiun-Ju Chen)

关键词

動態極值模型 ; 交易量 ; 風險值決定 ; Dynamic EVT-based VaR Model ; Trading Volume ; Determinant of VaR

期刊名称

應用經濟論叢

卷期/出版年月

88期(2010 / 12 / 01)

页次

1 - 28

内容语文

英文

中文摘要

晚近,動態極值理論基礎(dynamic EVT-based)的GARCH族群模型已逐漸成爲全球主要金融機構在估計其持有資產部位市場風險值(value-at-risk, VaR)之較爲偏好採用之模型。不過再精緻之模型在實際運用上仍有賴於充份之資訊;依混合分配假說(mixture distribution hypothesis)之內涵,交易量(trading volume)具有資訊到達(information arrival)之功能,因此在理論上,金融資產之交易量可能與報酬波動性具有顯著關聯。然而,現行常用之動態極值風險值模型怠於將金融市場由不對稱交易量變動所引發的報酬波動性納入考量。據此,本研究之目的旨在探討將交易量納入動態極值風險值模型架構,是否能改善期貨市場資產風險值估計的精確性。 實證分析部份,嘗試採用三種常用不同規格之動態極值理論基礎風險值模型加入交易量(volume, V)進行剖析。其中,包含GARCH、GJR、EGARCH等三組動態極值風險值模型。觀察期間自1997年1月初至2001年12月底,而以NATURAL GAS期貨、NASDAQ INDEX期貨與S&P 500 INDEX期貨等三個期貨資產爲樣本,採二階段分析法,首先將交易量納入前述三種常用之動態極值GARCH族群模型估計其風險值;其次,運用回溯測試(back testing)計算穿越次數,並輔以均方差根(RMSE)評估模型的精確性。實證結果,發現有考量交易量之模型精確性均優於傳統動態極值理論法;而在三組模型中,又以GJR爲最佳。

英文摘要

The dynamic EVT-based GARCH model has evolved as a preferred approach in the estimation of value-at-risk (VaR), in global financial institutions. Sophisticated risk models also require full information, however, the traditional standard dynamic VaR model failed to account for an important nature of return volatility driven by asymmetric volume changes in the financial markets. The main objective of this study is to investigate whether an incorporation of trading volume improve the accuracy in the estimation of VaR in future markets. Using alternative dynamic EVT-based GARCH family VaR models including GARCH, GJR and EGARCH, over the period from Jan. 1997 to Dec. 2001, the study examine VaRs of three major US futures markets, NASDAQ INDEX, S&P 500 INDEX and NATURAL GAS. Consistent with our a-priori expectation, the finding indicates that the proposed alternative dynamic EVT-based GARCH family VaR models with volumes, in general, outperform traditional dynamic EVT-based VaR models. In particular, GJR+GPD+V is the best model among the others in terms of both rate of violation and RMSE.

主题分类 基礎與應用科學 > 永續發展研究
生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Andersen, T. G.(1996).Return Volatility and Trading Volume: an Information Flow Interpretation of Stochastic Volatility.Journal of Finance,51,169-204.
  2. Balkema, A.,de Haan, L.(1974).Residual Life Time at Great Age.Annals of Probability,2,792-804.
  3. Bessembinder, H.,Seguin, P. J.(1992).Futures Trading Activity and Stock Price Volatility.Journal of Finance,47,2015-2034.
  4. Bohl, M. T.,Henke, H.(2003).Trading Volume and Stock Market Volatility: the Polish Case.International Review Finance Analysts,12,513-525.
  5. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,31,307-327.
  6. Bollerslev, T.,Chou, R.,Kroner, K.(1992).ARCH Modeling in Finance.Journal of Econometrics,52,5-59.
  7. Bollerslev, T.,Wooldridge, J. M.(1992).Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying Covariances.Econometric Reviews,11,143-172.
  8. Bystrom, H. N. E.(2004).Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.International Review of Financial Analysis,13,133-152.
  9. Chordia, T.,Swaminathan, B.(2000).Trading Volume and Cross-autocorrelations in Stock Returns.Journal of Finance,55,913-935.
  10. Clark, P. K.(1973).A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices.Econometrica,41,135-155.
  11. Cooper, M.(1999).Filter Rules Based on Price and Volume in Individual Security Over Reaction.Review of Financial Studies,12,39-63.
  12. Diebold, F.,Schuermann, T.,Stroughair, J.(2000).Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management.Journal of Risk Finance,1,30-36.
  13. Embrechts, P.,Kluppelberg, C.,Mikosh, T.(1997).Modelling Extremal Events for Insurance and Finance.Berlin:Springer-Verlag.
  14. Engle, R. F.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom.Econometrica,50,987-1007.
  15. Epps, T. W.,Epps, M. L.(1976).The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture Distributions Hypothesis.Econometrica,44,305-321.
  16. Fernandez, V.(2005).Risk Management Under Extreme Events.International Review of Financial Analysis,14,113-148.
  17. Fung, H. G.,Patterson, G. A.(1999).The Dynamic Relationship of Volatility, Volume, and Market Depth in Currency Futures Markets.Journal of International Financial Markets, Institutions and Money,9,35-59.
  18. Gallo, G.,Pacini, B.(2000).The Effects of Trading Activity on Market Volatility.European Journal Finance,6,163-175.
  19. Gencay, R.,Selcuk, F.(2004).Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.International Journal of Forecasting,20,287-303.
  20. Gerlach, R.,Cathy, W. S.,Doris, S. Y.,Huang, M. H.(2006).Asymmetric Responses of International Stock Markets to Trading Volume.Physica A,360,422-444.
  21. Glosten, L.,Jagannathan, R.,Runkle, D.(1992).On the Relation Between the Expected Value and Volatility of Nominal Excess Return on Stocks.Journal of Finance,46,1779-1801.
  22. Jorion, P.(2002).Value at Risk: the New Benchmark for Controlling Market Risk.New York:McGraw-Hill.
  23. Karpoff. J. M.(1987).The Relation Between Price Changes and Trading Volume: a Survey.Journal of Financial and Quantitative Analysis,22,109-126.
  24. Kellezi, E.,Gilli, M.(2000).Extreme Value Theory for Tail-related Risk Measures.Geneva:Department of Econometrics and FAME, University of Geneva.
  25. Kim. D.,Kon, S.(1994).Alternative Models for the Conditional Heteroscedasticity of Stock Returns.Journal of Business,67,563-588.
  26. Koutmos, G.,Booth, G. G.(1995).Asymmetric Volatility Transmission in International Stock Markets.Journal of International Money and Finance,14,747-762.
  27. Lamoureux, C. G.,Lastrapes, W. D.(1990).Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects.Journal of Finance,11,221-229.
  28. Lee, B. S.,Rui, O. M.(2002).The Dynamic Relationship between Stock Returns and Trading Volume: Domestic and Cross-country Evidence.Journal of Banking and Finance,26,51-78.
  29. Lee, C. M. C.,Swaminathan, B.(2000).Price Momentum and Trading Volume.The Journal of Finance,55,2017-2069.
  30. Locke, P. R.,Sayers, C. L.(1993).Intraday Futures Price Volatility: Information Effects and Variance Persistence.Journal of Applied Econometrics,8,15-30.
  31. Longin, F. M.(1997).The Threshold Effect in Expected Volatility: a Model Based on Asymmetric Information.The Review of Financial Studies,10,837-869.
  32. Longin, F. M.(2000).From Value at Risk to Stress Testing: the Extreme Value Approach.Journal of Banking & Finance,24,1097-1130.
  33. McAleer, M.(2005).Automated Inference and Learning in Modeling Financial Volatility.Econometric Theory,21,232-261.
  34. McAleer, M.,Chan, F.,Marinova, D.(2007).An Econometric Analysis of Asymmetric Volatility: Theory and Application to Patents.Journal of Econometrics,139,259-284.
  35. McAleer, M.,da Veiga, B.(2008).Forecasting Value-at-Risk with a Parsimonious Portfolio Spillover GARCH (PS-GARCH) Model.Journal of Forecasting,27,1-19.
  36. McAleer, M.,da Veiga, B.(2008).Single-index and Portfolio Models for Forecasting Value-at-Risk Threshold.Journal of Forecasting,27,217-235.
  37. McMillan. D. G.(2007).Non-liner Forecasting of Stock Returns: Does Volume Help?.International Journal of Forecasting,23,115-126.
  38. McNeil, A. J.(1997).Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory.ASTIN Bulletin,27,117-137.
  39. McNeil, A. J.(1998).Calculating Quantile Risk Measures for Financial Return Series Using Extreme Value Theory.Zurich:Department Mathematik, ETH Zentrum.
  40. McNeil, A. J.,Frey, R.(2000).Estimation of Tail-related Risk Measures for Heteroscedastic Financial Time Series: an Extreme Value approach.Journal of Empirical Finance,7,271-300.
  41. McNeil, A. J.,Saladin, T.(1997).The Peaks over Thresholds Method for Estimating High quantiles of Loss Distributions.Proceedings of XXVIIth International ASTIN Colloquium,Cairns, Australia:
  42. Moosa, I.,Silvapulle, P.,Silvapulle, M.(2003).Testing for Temporal Asymmetry in the Price-volume Relationship.Bulletin of Economic Research,4,3307-3378.
  43. Nelson, D. B.(1991).Conditional Heteroscedasticity in Asset Returns: a New Approach.Econometrica,59,347-370.
  44. Omran, M.,McKenzie, E.(2000).Heteroscedasticity in Stock Returns Data Revisited: Volume versus GARCH Effects.Applied Finance Economics,10,553-560.
  45. Pickands, J.(1975).Statistical Inference Using Extreme Order Statistics.The Annals of Statistics,3,119-131.
  46. Ying, C. C.(1966).Stock Market Prices and Volumes of Sales.Econometrica,34,676-685.