题名

上海股市與恆生國企股期現貨指數在次級房貸及金融海嘯事件之下波動性與相關性分析

并列篇名

Volatility and Correlation Analysis for Shanghai and Hong Kong Stock and Futures Markets under Subprime Mortgage and Financial Tsunami Events

DOI

10.3966/054696002015060097005

作者

劉祥熹(Hsiang-Hsi Liu);王錦瑩(Jin-YinWang);陳威蓁(Wei-Chen Chen)

关键词

波動性 ; 相關性 ; GJR-GARCH模型 ; DCC模型 ; Volatility ; Correlation ; GJR-GARCH Model ; DCC Model

期刊名称

應用經濟論叢

卷期/出版年月

97期(2015 / 06 / 01)

页次

171 - 209

内容语文

繁體中文

中文摘要

本文探討上證指數、恆生國企股指數與恆生國企股期貨指數之間在次級房貸事件與金融海嘯期間波動性與相關性行程的變動過程,文中發現對三種指數而言,分析其報酬率的互動情形時,VEC GJR-GARCH模型優於單純的向量誤差修正(VEC)模型。而利用Inclan and Tiao(1994)之ICSS法,可協助發現多重波動性結構改變的時點,正是次貸危機時期與全球金融海嘯時期。在VEC DCC GJR-GARCH模型的分析之下,研究發現次貸危機與全球金融海嘯事件對上海與恆生股票市場波動性都產生增強的效果,另外就相關性而言,僅金融海嘯事件對於市場間的相關性有顯著且正向的影響,至於次貸危機事件,雖亦造成市場間相關性增加,但並不具統計顯著性。換言之,個別市場波動性對外在環境的改變較為敏感,而市場間的相關性變化,主要取決於二市場間的交互作用變化,雖也會受外在重大事件的影響,但仍須視外在事件之重要程度而定。

英文摘要

This study discusses the dynamical volatility and correlation relationships among SSE Composite Index, Hang Seng China Enterprises Index and Hang Seng China Enterprises Futures Index under the crisis of subprime mortgage and global financial tsunami. Based on the empirical study, we find the VEC GJR-GARCH model is better than pure Vector error correction (VEC) approach when analyzing the interactions of these returns structure. By using ICSS method which proposed by Inclan and Tiao(1994), we can catch up the structure change points for variance processes. The variance structure change periods just correspond to the event of subprime mortgage and financial tsunami events. Under the method of VEC DCC GJR-GARCH model, we also find these crisis events will boost the level of volatility to respective financial market. As to the impact for the correlation structure created from the crisis events among these target markets, the influence from the financial tsunami event is stronger than the subprime mortgage event from the viewpoints of statistics significance.

主题分类 基礎與應用科學 > 永續發展研究
生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Asteriou, D.,Hall, S. G.(2007).Applied Econometrics: A Modern Approach.New York:Palgrave McMillan.
  2. Black, F.(1976).The Pricing of Commodity Contracts.Journal of Financial Economics,3,167-179.
  3. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,31,307-327.
  4. Bollerslev, T.(1990).Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model.Review of Economics and Statistics,72,498-505.
  5. Bollerslev, T.,Chou, R. F.,Kroner, K. F.(1992).ARCH Modeling in Finance.Journal of Econometrics,52,5-59.
  6. Bollerslev, T.,Engle, R. F.,Wooldridge, J. M.(1988).A Capital Asset Pricing Model with Time-varying Covariances.Journal of Political Economy,96,116-131.
  7. Chiang, T. C.,Jeon, B. N.,Li, H.(2007).Dynamic Correlation Analysis of Financial Contagion: Evidence from Asian Markets.Journal of International Money and Finance,26,1206-1228.
  8. Chou, R. Y.,Wu, C. C.,Liu, N.(2009).Forecasting Time-varying Covariance with a Range-based Dynamic Conditional Correlation Model.Review of Quantitative Finance and Accounting,33,327-345.
  9. Enders, W.(2004).Applied Econometric Time Series.New York:John Wiley & Sons Inc Press.
  10. Engle R. F.,Kroner, K. F.(1995).Multivariate Simultaneous Generalized ARCH.Econometric Theory,11,122-150.
  11. Engle, R. F.(1982).Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation.Econometrica,50,987-1007.
  12. Engle, R. F.(2002).Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.Journal of Business and Economic Statistics,20,339-350.
  13. Engle, R. F.,Granger, C. W. J.(1987).Co-integration and Error Correction: Representation, Estimation and Testing.Econometrica,44,101-108.
  14. Engle, R. F.,Ng, V. K.(1993).Measuring and Testing the Impact of News on Volatility.Journal of Finance,48,1749-1778.
  15. Glosten, L. R.,Jagannathan, R.,Runkle, D. E.(1993).On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks.Journal of Finance,48,1779-1801.
  16. Inclan, C.,Tiao, G. C.(1994).Use of Cumulative Sums of Squares for Retrospective Detection of Change of Variance.Journal of the American Statistical Association,89,913-923.
  17. Johansen, S.(1988).Statistical Analysis of Cointegration Vectors.Journal of Economic Dynamics and Control,12,231-254.
  18. Ljung, G. M.,Box, G. E. P.(1978).On a Measure of Lack of Fit in Time Series Models.Biometrika,65,297-303.
  19. Nelson, D. B.(1991).Conditional Heteroskedasticity in Asset Returns: A New Approach.Econometrica : Journal of the Econometric Society,59,347-370.
  20. Phillips, P. C. B.,Perron, P.(1988).Testing for a Unit Root in Time Series Regression.Biometrica,75,335-346.
  21. Zivot, E.,Andrews, D. W. K.(1992).Further Evidence on Great Cash, the Oil Price Shock and the Unit Root Hypothesis.Journal of Business and Economic Statistics,10,251-270.
被引用次数
  1. 韓濬聰、張志宏、洪瑞成、王偉權(2016)。中國滬深 300 指數之期現貨市場的互動與價格發現的過程。會計與財金研究,9(2),65-104。