题名

社群媒體情緒與房市交易資訊關係之檢視

并列篇名

An Examination of the Relationship between Social Media Sentiment and Housing Market Information

DOI

10.53106/054696002023060113003

作者

朱芳妮(Fang-Ni Chu);高嘉璘(Chia-Lin Kao);洪志興(Chih-Hsing Hung);陳明吉(Ming-Chi Chen)

关键词

社群媒體情緒 ; 房市 ; 網路聲量 ; 臉書 ; 網路論壇 ; Social Media Sentiment ; Housing Market ; Online Response ; Facebook ; Internet Forum

期刊名称

應用經濟論叢

卷期/出版年月

113期(2023 / 06 / 01)

页次

85 - 138

内容语文

繁體中文;英文

中文摘要

透過社群網路搜尋人們的看法評價作為參考已成為現代人做決策的一種方式,過去文獻已發現傳統媒體是影響市場的重要因素,本文進一步了解社群媒體與房市變化是否有關聯。本文使用OpView社群口碑資料庫2016年至2020年有關房市的臉書(Facebook)與論壇(PTT)貼文,建構社群媒體情緒聲量指標,與房價、交易量、流通天數、議價空間等四個房市交易資訊以進行關係的實證測試。結果顯示Facebook與PTT社群總情緒聲量或區分為正面、負面、中立情緒之測試,可發現對房價與房屋交易量有顯著影響力,但對房屋流通天數與議價空間就只有PTT社群情緒聲量發現影響力。在Granger因果關係檢定方面,房價與交易量與社群情緒聲量互為因果,也就是發生回饋的情況,然社群情緒聲量僅單向影響流通天數,並與議價空間有很弱的因果關係。透過觀察衝擊反應函數,Facebook社群情緒聲量對房價在衝擊發生的初期有正向且顯著的影響,PTT社群情緒聲量則是對房價、議價空間分別有相對較長期間的正向、負向影響。本文證實社群媒體對於房市具有一定程度的影響力,透過觀察社群情緒聲量能對房市變化更有掌握。

英文摘要

Online social networks have become a popular channel through which individuals obtain opinions and evaluations that enable them to make informed decisions. Studies have determined that traditional media are a key factor influencing various markets. The present study explored the relationship between social media and housing market changes. The OpView database was searched to retrieve online responses posted between 2016 and 2020 on various social media platforms (i.e., Facebook and PTT). Social media sentiment indices, which were constructed on the basis of the collected online responses, were used to analyze the correlations of the responses with housing price, transaction volume, time-on-the-market, and price concessions. The results indicate that the general, positive, negative, and neutral online responses posted on Facebook and PTT significantly influenced both housing prices and transaction volume. However, only the online responses posted on PTT significantly affected time-on-the-market and price concessions. The results of a Granger causality test revealed the two-way causal relationships of housing prices and transaction volume with online responses, indicating the presence of a feedback mechanism. However, online responses only affected time-on-the-market in one direction, and their causal relationship with price concessions was weak. The results obtained using the impact response function indicate that the effect of Facebook online responses on housing prices was only significant and positive during the initial period of shock. By contrast, the positive and negative effects of PTT online responses on housing prices and price concessions, respectively, persisted for a longer period. We determined that online social media responses influenced the housing market. Through an analysis of social media sentiment, we obtained a clearer understanding of housing market fluctuations.

主题分类 基礎與應用科學 > 永續發展研究
生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Chen, M. C.,Patel, K.(2002).An Empirical Analysis of Determination of House Prices in the Taipei Area.Taiwan Economic Review,30,563-595.
    連結:
  2. 王貿, Mo(2020)。公務人員關注議題之文字探勘:以 PTT 公職板為例。調查研究─方法與應用,45,119-154。
    連結:
  3. 朱芳妮, F. N.,陳明吉, M. C.(2018)。從行為經濟學看台灣不動產市場:羅伯特.席勒教授來台演講之省思與啟示。住宅學報,27,111-128。
    連結:
  4. 朱芳妮, F. N.,楊茜文, C. W.,黃御維, Y. W.,陳明吉, C. M.(2020)。媒體傳播效應與房市變化關聯性之驗證。管理學報,37,225-257。
    連結:
  5. 朱芳妮, F. N.,楊茜文, C. W.,蘇子涵, T. H.,陳明吉, M. C.(2020)。情緒會影響房市嗎?指數編制與驗證。住宅學報,29,35-68。
    連結:
  6. 江義平, I. P.,江孟璇, M. H.,楊婉伶, W. L.(2019)。社群媒體使用行為之構形探究。電子商務研究,17,247-275。
    連結:
  7. 沈中華, C. H.,賴幸蓉, H. J.,黃庭儀, T. Y.(2017)。網路品牌口碑是否有助於銀行的消費性金融業務的成長?。兩岸金融季刊,5,23-41。
    連結:
  8. 周美伶, M. L.,張金鶚, C. O.(2004)。購屋搜尋期間影響因素之研究。管理評論,24,133-150。
    連結:
  9. 林左裕, T. C.(2019)。應用網路搜尋行為預測房地產市場。應用經濟論叢,105,221-257。
    連結:
  10. 林思平, S. P.(2020)。純粹社群、掛釘社群與網絡個人主義:以批踢踢八卦板(PTT Gossiping)為例。資訊社會研究,38,127-161。
    連結:
  11. 花敬群, C. C.,張金鶚, C. O.(1997)。住宅市場價量波動之研究。住宅學報,5,1-15。
    連結:
  12. 殷志偉, C. W.,劉正, J.(2020)。非核家園的民眾意向:網路輿論的大數據分析。選舉研究,27,49-92。
    連結:
  13. 楊茜文, C. W.,朱芳妮, F. N.,呂少毫, S. H.,陳明吉, M. C.(2022)。房市參與者之關注會影響房價嗎?。管理與系統,29,495-523。
    連結:
  14. 劉振隆, J. L.,張愷珉, K. M.,吳芷軒, C. H.,于采玉, T. Y.,李彥君, Y. J.,黃鈺珊, Y. S.(2018)。政府資料開放平臺之 PM2.5 即時監測資料分析。管理資訊計算,7,1-12。
    連結:
  15. 蕭維傑, W. J.,王維菁, W. C.(2018)。動態消息演算法、能見度、與新聞經營:以 Facebook 平台為例。資訊社會研究,34,63-104。
    連結:
  16. Ahmed, B.(2020).Understanding the Impact of Investor Sentiment on the Price Formation Process: A Review of the Conduct of American Stock Markets.The Journal of Economic Asymmetries,22,e00172.
  17. Ajjoub, C.,Walker, T.,Zhao, Y.(2021).Social Media Posts and Stock Returns: The Trump Factor.International Journal of Managerial Finance,17,185-213.
  18. Akerlof, G. A.,Shiller, R. J.(2010).Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism.Princeton:Princeton University Press.
  19. Bailey, M.,Cao, R,Kochler, T.,Stroebel, J.(2018).The Economic Effects of Social Networks: Evidence from the Housing Market.Journal of Political Economy,126,2224-2276.
  20. Ball-Rokeach, S. J.,DeFleur, M. L.(1976).A Dependency Model of Mass Media Effects.Communication Research,3,3-21.
  21. Bartov, E.,Faurel, L.,Mohanram, P. S.(2018).Can Twitter Helps Predict Firm-level Earnings and Stock Returns?.The Accounting Review,93,25-57.
  22. Bethke, S.,Gehde-Trapp, M.,Kempf, A.(2017).Investor Sentiment, Flight-to-Quality, and Corporate Bond Comovement.Journal of Banking & Finance,82,112-132.
  23. Broadstock, D. C.,Zhang, D.(2019).Social-media and Intraday Stock Returns: The Pricing Power of Sentiment.Finance Research Letters,30,116-123.
  24. Chen, R.,Boa, W.,Jin, C.(2021).Investor Sentiment and Predictability for Volatility on Energy Futures Markets: Evidence from China.International Review of Economics & Finance,75,112-129.
  25. Dickey, D. A.,Fuller, W. A.(1981).Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.Econometrica,49,1057-1072.
  26. Du, D.,Gunderson, R. J.,Zhao, X.(2016).Investor Sentiment and Oil Prices.Journal of Asset Management,17,73-88.
  27. Fang, L.,Yu, H.,Huang, Y.(2018).The Role of Investor Sentiment in the Long-term Correlation between U.S. Stock and Bond Markets.International Review of Economics & Finance,58,127-139.
  28. Granger, C. W. J.(1988).Some Recent Developments in a Concept of Causality.Journal of Econometrics,39,199-211.
  29. Granger, C. W. J.(1986).Development in the Study of Cointegrated Economic Variables.Oxford Bulletin of Economics and Statistics,48,213-228.
  30. Hu, L.,He, S.,Han, Z.,Xiao, H.,Su, S.,Weng, M.,Cai, Z.(2019).Monitoring Housing Rental Prices Based on Social Media: An Integrated Approach of Machine-learning Algorithms and Hedonic Modeling to Inform Equitable Housing Policies.Land Use Policy,82,657-673.
  31. Hu, M. R.,Lee, A. D.(2020).Outshine to Outbid: Weather-Induced Sentiment and the Housing Market.Management Science,66,1440-1472.
  32. Johansen, S.(1988).Statistical Analysis of Integration Vectors.Journal of Economic Dynamics and Control,12,231-254.
  33. Katz, E.,Lazarsfeld, P. F.(1964).Personal Influence: The Part Played by People in the Flow of Mass Communications.Piscataway, New Jersey:Transaction Publishers.
  34. Koupaei, D. M.,Song, T.,Cetin, K. S.,Im, J.(2020).An Assessment of Opinions and Perceptions of Smart Thermostats using Aspect-based Sentiment Analysis of Online Reviews.Building and Environment,170,106603.
  35. Li, Y.,Zhou, H.,Lin, Z.,Wang, Y.,Chen, S.,Liu, C.,Wang, Z.,Gifu, D.,Xia, J.(2020).Investigation in the Influences of Public Opinion Indicators on Vegetable Prices by Corpora Construction and WeChat Article Analysis.Future Generation Computer Systems,102,876-888.
  36. Lin, H. C.,Bruning, P. F.,Swarna, H.(2018).Using Online Opinion Leaders to Promote the Hedonic and Utilitarian Value of Products and Services.Business Horizons,61,431-442.
  37. López-Cabarcos, M. Á.,Piñeiro-Chousa, J.,Pérez-Pico, A. M.(2017).The Impact Technical and Non-technical Investors have on the Stock Market: Evidence from the Sentiment Extracted from Social Networks.Journal of Behavioral and Experimental Finance,15,15-20.
  38. Meen, G. P.(1993).,Great Britain:Department of the Environment, Housing and Urban Monitoring & Analysis.
  39. Meen, G. P.(1990).The Removal of Mortgage Market Constraints and The Implications for Econometric Modelling of UK House Prices.Oxford Bulletin Economics and Statistics,52,1-23.
  40. Ni, Y.,Su, Z.,Wang, W.,Ying, Y.(2019).A Novel Stock Evaluation Index based on Public Opinion Analysis.Procardia Computer Science,147,581-587.
  41. Piñeiro-Chousa, J.,López-Cabarcos, M. Á.,Caby, J.,Šević, A.(2021).The Influence of Investor Sentiment on the Green Bond Market.Technological Forecasting and Social Change,162,120351.
  42. Ruan, Y.,Durresi, A.,Alfantoukh, L.(2018).Using Twitter Trust Network for Stock Market Analysis.Knowledge-Based Systems,145,207-218.
  43. Shiller, R. J.(2017).Narrative Economics.American Economic Review,107,967-1004.
  44. Shiller, R. J.(2000).Irrational Exuberance.Philosophy and Public Policy Quarterly,20,18-23.
  45. Siikanen, M.,Baltakys, K.,Kanniainen, J.,Vatrapu, R.,Mukkamala, R.,Hussain, A.(2018).Facebook Drives Behavior of Passive Households in Stock Markets.Finance Research Letters,27,208-213.
  46. Tan, M. J.,Guan, C. H.(2021).Are People Happier in Locations of High Property Value? Spatial Temporal Analytics of Activity Frequency, Public Sentiment and Housing Price using Twitter Data.Applied Geography,132,102474.
  47. Zhang, W.,Wang, P.,Li, X.,Shen, D.(2018).Twitter’s Daily Happiness Sentiment and International Stock Returns: Evidence from Linear and Nonlinear Causality Tests.Journal of Behavioral and Experimental Finance,18,50-53.
  48. Zhu, E., J. Wu, H. Liu, and K. Li, 2018, “A Sentiment Index of the Housing Market: Text Mining of Narratives on Social Media”, SSRN Working Paper, No. 3223566
  49. 王亭茹, T. J.(2015)。國立清華大學服務科學研究所=Institute of Service Science, National Tsing Hua University。
  50. 江義平, I. P.,賴欣怡, H. Y.(2014)。網路社群媒體使用者資訊分享行為探究。創新與管理,11,23-51。
  51. 林意仁, Y. R.(2010)。由 PTT Gossiping 看板看『網路公眾』。文化研究月報,108,52-70。
  52. 范清益, C. Y.(2010)。買屋賣屋「殺」很大!-議價空間與住宅不動產市場流動性之影響因素分析。土地問題研究季刊,9,82-91。
  53. 程輝, H.,劉雲, Y.(2008)。基於時間序列的網路輿情預測模型。網際網路技術學刊,9,429-432。
  54. 意藍資訊=Eland Information(2018)。意藍資訊,2018,OpView Insight 服務說明書(v4.4),意藍資訊。(Eland Information, 2018, OpView Insight Instructions (v4.4), Eland Information。
  55. 楊立偉, L. W.(2020).社群大數據:網路聲量、口碑及輿情分析.新北市=New Taipei City:前程文化=Future Career Publishing.
  56. 劉振隆, J. L.,郭庭瑜, T. Y.,黃湋宸, W. C.,蔡佳潔, J. J.(2018)。以社群大數據為基礎之台灣民眾國外旅遊概況與觀光行為模式。觀光與休閒管理期刊,6,13-22。