中文摘要
|
國人常用中藥材進行養生健體和食補益氣等目的,臺灣的中藥材以進口為主,因此應嚴格把關市售中藥材之安全性。衛生福利部設立邊境查驗制度,然用於檢驗的設備(如:GC/MS/MS)雖精確度佳,但耗資高昂、檢驗流程也較耗時,故難普及於大量樣本檢測。本研究透過表面增強型拉曼光譜建立目標農藥之拉曼指紋光譜及辨別其特徵波長,並建立其殘留於中藥之半定量分析。選擇分析中藥材樣本為黃耆,農藥殘留測試對象為常見殺菌劑貝芬替。拉曼光譜使用785 nm雷射光源進行實驗,以自適應疊代重加權懲罰最小二乘(Adaptive iteratively reweighted penalized least squares, airPLS)進行光譜基線校正,以建立貝芬替拉曼指紋圖譜。於實驗結果中,可判別出貝芬替之七支特徵峰值位置,分別位於624、771、1,003、1,222、1,269、1,459和1,514 cm^(-1)處。而於貝芬替殘留於黃耆之複合樣本中,可於771、1,003、1,222、1,269和1,514 cm^(-1)等五特徵峰值位置,於濃度3.34至13.41 ppm區間,以希爾方程式(Hill equation)建立達R^2=0.99之檢量線。本研究透過表面增強拉曼光譜以黃耆中之貝芬替殘留量進行試驗,成功確認該殺菌劑之拉曼指紋圖譜、特徵峰值位置,及建立藥劑殘留之半定量濃度檢量線。此方法有機會為中藥材中之農藥殘留檢驗,提供一較快速且降低檢驗成本的替代方案。
|
英文摘要
|
In Taiwan, people have the habit of using Chinese herbs to improve fitness and as nutrition supplements. Since the majority of Chinese herbs in Taiwan are imported, the safety of the marketed product is crucial and should be strictly controlled. The Ministry of Health and Welfare has set up a border control system to ensure the safety of imported herbs. Instruments of high accuracy, e.g., GCC/MS/MS, are used for inspection. However, due to the limitations of high operation cost and long processing time, these instruments cannot not be widely applied to a large number of samples. This study aimed to establish the Raman fingerprint spectrum of a target pesticide, identify the characteristic peaks, and develop semi-quantification methods for screening pesticide in Chinese herbs using SERS. The Chinese herb, astragalus, and a common fungicide, carbendazim, were selected as the tested targets. Raman spectroscopy with laser excitation at 785 nm was applied to take spectra measurement. Adaptive iteratively reweighted penalized least squares (airPLS) were used as the baseline correction methods to build the Raman fingerprint spectrum of carbendazim. From the experimental results, seven characteristic peak positions of carbendazim were identified, which were located at 624, 771, 1,003, 1,222, 1,269, 1,459, and 1,514 cm^(-1). For the carbendazim-astragalus mixed samples, the calibration curves of five peaks at 771, 1,003, 1,222, 1,269, and 1,514 cm^(-1) were developed with the R^2 = 0.99. This study successfully applied SERS to develop Raman fingerprint spectra for the carbendazim standard, identify its characteristic peaks, and build calibration curves for the residue in astragalus. The proposed method provides a promising tool for detecting pesticide residues in Chinese herbs faster and with lower cost.
|
参考文献
|
-
陳儀驊、徐雅慧、劉宜祝、羅吉方。2011。中藥之農藥殘留檢驗 (VII)。食品藥物研究年報 (2):323-334。doi: 10.6945/ARFDR.201112.0325
連結:
-
Anastassiades, M., and W. Schwack. 1998. Analysis of carbendazim, benomyl, thiophanate methyl and 2, 4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction. J. Chromatogr. A. 825(1):45-54. doi: 10.1016/S0021-9673(98)00691-8
連結:
-
Barlas, N., G. Selmanoglu, A. Kockaya, and S. Songür. 2002. Effects of carbendazim on rat thyroid, parathyroid, pituitary and adrenal glands and their hormones. Hum. Exp. Toxicol. 21(4):217-221. doi: 10.1191/0960327102ht187oa
連結:
-
Fleischmann, M., P. J. Hendra, and A. J. McQuillan. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2):163-166. doi: 10.1016/0009-2614(74)85388-1
連結:
-
Furini, L. N., S. Sanchez-Cortes, I. López-Tocón, J. C. Otero, R. F. Aroca, and C. J. L. Constantino. 2015. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering. J. Raman Spectrosc. 46(11):1095-1101. doi: 10.1002/jrs.4737
連結:
-
Goldman, J. M., G. L. Rehnberg, R. L. Cooper, L. E. Gray Jr, J. F. Hein, and W. K. McElroy. 1989. Effects of the benomyl metabolite, carbendazim, on the hypothalamic-pituitary reproductive axis in the male rat. Toxicol. 57(2):173-182. doi: 10.1016/0300-483X(89)90163-7
連結:
-
Liu, B., P. Zhou, X. Liu, X. Sun, H. Li, and M. Lin. 2013. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol. 6(3):710-718. doi: 10.1007/s11947-011-0774-5
連結:
-
Ma, C. H., J. Zhang, Y. C. Hong, Y. R. Wang, and X. Chen. 2015. Determination of carbendazim in tea using surface enhanced Raman spectroscopy. Chin. Chem. Lett. 26(12):1455-1459. doi: 10.1016/j.cclet.2015.10.015
連結:
-
Rajapandiyan, P., and J. Yang. 2012. Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. Anal. chem. 84(23):10277-10282. doi: 10.1021/ac302175q
連結:
-
Stacy, A. A., and R. P. Van Duyne. 1983. Surface enhanced raman and resonance raman spectroscopy in a non-aqueous electrochemical environment: Tris (2, 2'-bipyridine) ruthenium (II) adsorbed on silver from acetonitrile. Chem. Phys. Lett. 102(4):365-370. doi:10.1016/0009-2614(83)87057-2
連結:
-
Tsen, C. M., C. W. Yu, W. C. Chuang, M. J. Chen, S. K. Lin, T. H. Shyu, and all. 2019. A simple approach for the ultrasensitive detection of paraquat residue in adzuki beans by surfaceenhanced Raman scattering. Analyst. 144(2):426-438. doi: 10.1039/C8AN01845F
連結:
-
Thien, N. D., N. Q. Hoa, N. N. Tu, S. C. Doanh, and N. N. Long. 2019. Detection of Carbendazim by SERS Technique Using Silver Nanoparticles Decorated SiO2 Opal Crystal Substrates. J. Electron. Mater. 1-7. doi: 10.1007/s11664-019-07662-0
連結:
-
Wang, C., X. Wu, P. Dong, J. Chen, and R. Xiao. 2016. Hotspots engineering by grafting Au@ Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens Bioelectron. 86:944-950. dio: 10.1016/j.bios.2016.06.082
連結:
-
Zhang, Z. M., S. Chen, and Y. Z. Liang. 2010. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst. 135(5):1138-1146. doi: 10.1039/b922045c
連結:
-
Zhai, C., Y. Peng, Y. Li, Y. Yang, K. Chao, and J. Qin. 2016. Nondestructive detection of carbendazim residue in apples by using surface-enhanced Raman spectroscopy. In "2016 ASABE Annual International Meeting", p. 1. St. Joseph, IM: Am. Soc. Agric. Bio. Eng. doi:10.13031/aim.20162460871
連結:
-
行政院衛生福利部。2017。食品中殘留農藥檢驗方法-多重殘留分析方法(五)。106.08.31部授食字第1061901690 號公告修正。
-
徐田鋒、彭彥昆、李永玉、翟晨。2014。基於拉曼光譜技術檢測菠菜的毒死蜱殘留。食品安全質量檢測學報 (3):707-711。
-
萬益群、李申傑、付貴琴。2007。中草藥中有機磷及氨基甲酸酯類農藥殘留量的GC-MS測定。分析試驗室 26(6):81-84。
-
楊序綱、吳琪琳。2008。拉曼光譜的分析與應用。初版。北京:國防工業。pp. 14-14。
-
趙穎、劉瑜、金雁、蔣施、徐宜宏、鐘鈺、李梅。2011。氣相色譜- 質譜法同時檢測中草藥保健食品中41 種有機磷和氨基甲酸酯類農藥殘留。分析試驗室 30(12):59-65。
-
劉潔、佟玲、孟文婷、趙雲麗、於治國。2015 年。固相萃取- 超快速液相色譜- 串聯質譜法測定當歸中135 種農藥及其代謝物殘留。色譜 33 (12):1257-1268。
-
蔡苡娸。2016。探討金奈米立方體自組裝基板之表面增強拉曼散射效應於農藥檢測之應用。碩士論文。臺北:國立臺灣科技大學化學工程系。
-
聶春林、吳海、梁逸曾。2008。中草藥中40 種農藥殘留的氣相色譜- 質譜分析。精細化工中間體 38(4):59-65。
-
衛生福利部中醫藥司。2019。中藥材進口統計資料。https://dep.mohw.gov.tw/DOCMAP/cp-3237-7819-108.html. Accessed December 15, 2019.
-
衛生福利部食品藥物管理署。2019。農藥殘留容許量標準。https://consumer.fda.gov.tw/Law/PesticideList.aspx?nodeID=520&ic=%E8%B2%9D%E8%8A%AC%E6%9B%BF&tk=1&p=1. Accessed December 15, 2019.
|