题名

不同數學學習氣質學生情意和成長特徵之探討

并列篇名

An Investigation on Characteristics of Affect and Growth of Students with Different Mathematics Learning Dispositions

DOI

10.6251/BEP.20090428

作者

陳靜姿(Ching-Tzu Chen);洪碧霞(Pi-Hsia Hung)

关键词

成長斜率 ; 情意特徵 ; 統整評量 ; 數學學習 ; 學習氣質 ; affective assessment ; integrated assessment ; mathematics learning

期刊名称

教育心理學報

卷期/出版年月

42卷1期(2010 / 09 / 01)

页次

77 - 97

内容语文

繁體中文

中文摘要

鑑於學習氣質(disposition)在終身學習社會的重要性,以及領域特定學習理念對教育介入的著力優勢,本研究的目的在探討不同數學學習氣質類型學生的情意和數學能力進展差異,希望能提供數學教育研究與實務之參考。研究中以國小五年級213位學生爲研究對象,他們的數學學習氣質類型包含敏覺、投入、考試以及逃避等四型。文中擇取不同氣質的典型個案,對照呈現學生自陳的數學學習情意感受,進一步描繪氣質分型的意涵。研究結果顯示敏覺型學生勇於挑戰、享受樂趣且積極進取;投入型學生堅持目標、容忍挫折且沉穩踏實;考試型學生比較害怕失敗、挑戰意願薄弱、自我防衛較強;逃避型學生學習被動、缺乏自信、自我表徵較爲負向。而不同數學學習氣質類型學生數學成長呈現顯著的差異,投入型學生成長斜率顯著優於考試型學生的發現尤其值得重視。整體而言,兼顧數學認知和情意的氣質評量,利於統整呈現學生豐富的學習全貌,深具後續教育研究探討的潛力。

英文摘要

The purpose of this study was to investigate characteristics of affect and growth of students with different mathematics learning dispositions. The sampled 213 fifth graders were categorized into four disposition types based upon their profiles involving school grades, affective self rating, mathematics computer game, and standardized mathematics tests. Four distinct disposition types were derived from the empirical data: intelligent, engaged, test-oriented, and avoidant. The research findings show that the mathematics intelligent students were motivated and willing to take challenges. They enjoyed the learning process. The mathematics engaged students were motivated, persistent and resilient to setbacks. The test-oriented students tended to be afraid of failures and have strong self-defensive mechanisms. The mathematics avoidant are passive learners with low self-esteem. There are significant differences in the mathematic growth among students with different disposition types, and the growth slopes of engaged type is noticeably higher than test-oriented type. The study on mathematics learning disposition has implications for future research on mathematics learning and growth.

主题分类 社會科學 > 心理學
社會科學 > 教育學
参考文献
  1. 陳靜姿、洪碧霞、林娟如、吳裕益(2008)。數學學習氣質評量分類規準效度議題之探討。測驗學刊,55(2),377-406。
    連結:
  2. Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. Boston, DC: Heath and Company
  3. Bandura, A.(1997).Self-efficacy: The exercise of control.New York:Freeman.
  4. Bandura, A.(1986).Social foundations of thought and action.Englewood Cliffs, NJ:Prentice Hall.
  5. Baroody, A. J.(ed.),Dowker, A.(ed.)(2003).The development of arithmetic concepts and skills: Constructing adaptive expertise.Mahwah, NJ:Lawrence Erlbaum Associates.
  6. Beaton, A.,Mullis, I.,Martin, M.,Gonzalez, E.,Kelly, D.,Smith. T.(1996).,Chestnut Hill, MA:Boston College, TIMSS International Study Center.
  7. Berliner, D. C.(ed.),Calfee, R. C.(ed.)(1996).Handbook of educational psychology.New York:Macmillan.
  8. Bloomer, M.,Hodkinson, P.(2000).Learning careers: Continuity and change in young people's dispositions to learning.British Journal of Educational Studies,26(5),583-598.
  9. De Corte, E.(1995).Fostering cognitive growth: A perspective from research on mathematics learning and instruction.Educational Psychologist,30(1),37-46.
  10. Hartman, H.,Sternberg, R.(1993).A broad BACEIS model for improving thinking.Instructional Science,21(5),400-425.
  11. Heckhausen, J.(eds.),Dweck, C. S.(eds.)(1998).Motivation and self-regulation across the life span.NY:Cambridge University Press.
  12. Kilpatrick, J.(eds.),Swafford, J.(eds.),Findell, B.(eds.)(2001).Adding it up: Helping children learn mathematics.Washington, DC:National Research Council.
  13. Kuhl, J.(2000).The volitional basis of personality systems interaction theory: Applications in learning and treatment contexts.International Journal of Educational Research,33,665-703.
  14. National Council of Teachers of Mathematics(1995).Assessment standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  15. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  16. Perkins, D. N.,Jay, E.,Tishman, S.(1993).Beyond abilities: A dispositional theory of thinking.Merrill-Parker Quarterly,39(1),1-21.
  17. Pietsch, J.,Walker, R.,Chapman, E.(2003).The relationship among self-concept, self-efficacy, and performance in mathematics during secondary school.Journal of Educational Psychology,95(3),589-603.
  18. Pintrich, P. R.(ed.),Boekaerts, M.(ed.),M. Zeidner, M.(ed.)(2000).Self-regulation: Theory, research, and applications.Mahwah, NJ:Lawrence Erlbaum Associates.
  19. Ritchhart, R.(2001).From IQ to IC: A dispositional view of intelligence.Roeper Review,23(3),143-150.
  20. Snow, R. E.(1992).Aptitude theory: Yesterday, today, and tomorrow.Educational Psychologist,27,5-32.
  21. Wilkins, J. L. M.(2000).Preparing for the 21st century: The status of quantitative literacy in the United States.School Science and Mathematics,100(8),405-418.
  22. 洪碧霞(2004)。行政院國家科學委員會專案研究報告行政院國家科學委員會專案研究報告,未出版
  23. 洪碧霞(2002)。行政院國家科學委員會專案研究報告行政院國家科學委員會專案研究報告,未出版
  24. 財團法人國立台南師院校務發展文教基金會主編(2000)。九年一貫課程—從理論、政策到執行。高雄:復文。
  25. 陳靜姿(2006)。博士論文(博士論文)。國立台南大學教育經營與管理研究所。
  26. 龔心怡(2006)。行政院國家科學委員會專案研究報告行政院國家科學委員會專案研究報告,未出版
被引用次数
  1. 李宜玫(2012)。數學低成就學習動機之類型與區別分析:中小學弱勢學生與一般學生之比較。教育科學研究期刊,57(4),39-71。
  2. 劉玉玲,沈淑芬(2019)。國中生數學自我概念、數學學習策略與數學學業成就之模式建構。課程與教學,22(3),187-214。
  3. 劉玉玲、沈淑芬(2015)。數學自我概念、數學學習策略、數學學業情緒與數學學業成就之研究-自我提升模式觀點。教育心理學報,46(4),491-516。
  4. 薛岳、劉玉玲(2013)。國中生數學學業自我概念及數學學習策略與數學學業成就之研究-自我提升模式觀點。課程與教學,16(1),179-208。