题名

T6熱處理與冷鍛壓對6063鋁鑄棒性質之影響

并列篇名

The Effect of T6 Heat Treatment and Cold Forging for 6063 Aluminum Casting Bars

作者

廖桓雍(Huan-Yung Liao);邱垂泓(Chui-Hung Chiu);許耀中(Yao-Chung, Hsu);陳貞光(Jhewn-Kuang Chen)

关键词

6063鋁合金 ; T6熱處理 ; 冷鍛壓 ; 6063 Aluminum Alloy ; T6 Heat Treatment ; Cold Forging

期刊名称

鑄造工程學刊

卷期/出版年月

49卷1期(2023 / 06 / 01)

页次

19 - 24

内容语文

繁體中文;英文

中文摘要

針對鑄造製成之均質化6063鋁合金(代號AR)分別施以T6熱處理(代號T6)、固溶處理經冷鍛壓後進行人工時效(代號T8),與T6熱處理後再進行冷段壓(代號T9)等三種處理加工方式,分析不同熱處理和冷加工後材料之機械性質,探討其顯微組織之相關性及差異性。透過X光非破壞之完整性分析結果顯示,樣品AR、T6材料內部完整性均佳。經熱處理加工後之6063鋁合金(T6、T8、T9),因Mg-Si奈米析出強化相的形成,其強度與硬度大幅提升,延伸率則有所下降。而樣品T8、T9因另外施加冷鍛壓加工,使6063鋁合金強度進一步提升。其中T9熱處理有較完整且連續的固溶和時效流程,因此樣品T9-5%在本研究中具有最高之降伏強度和抗拉強度,相對延伸率略低於其他參數。

英文摘要

The homogeneous casting 6063 aluminum alloy (Specimen AR), is treated by three processes, including T6 heat treatment (Specimen T6), solid solution treatment then cold forging and artificial aging (Specimen T8), and T6 heat treatment followed by cold stamping (Specimen T9). The results of the X-ray non-destructive integrity analysis shows that the internal materials of the specimens AR and T6 are complete. The strength and hardness of the heat-treated 6063 aluminum alloy (T6, T8, and T9) increase significantly due to the formation of Mg-Si nano-precipitation strengthening phase, while the elongation decrease. The specimens T8 and T9 are further strengthened by the cold forging process. Among them, T9 heat treatment has a more complete and continuous solid solution and aging process. In this study, sample T9-5% has the highest YS and UTS and the elongation is slightly lower than the other parameters.

主题分类 工程學 > 礦冶與冶金工程
参考文献
  1. (1991).ASM Handbook, Volume 04 – Heat Treating.ASM International,4,673-675.
  2. (2021).“Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tube,” ASTM B221-20, 2021, pp. 6-8..
  3. (2015).“Standard Practice for Microetching Metals and Alloys,” ASTM E407-99, 2015, pp. 2-7..
  4. (2013).“Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8/E8M-13a, 2013, pp. 1-28..
  5. Amado, M. N.,Daroqui, F.(2015).Revision of The Solvus Limit of Al-Mg2Si Pseudo Binary Phase Diagram.Procedia Materials Science,8,1079-1088.
  6. Davis, J.R.(2001).ASM specialty handbook: Aluminum and Aluminum Alloys.ASM International,351-353.
  7. Dorward, R.(2018).Work Hardening and Annealing of Aluminum Alloys.Aluminum Science and Technology,279-292.
  8. Li, K.,Song, M.(2012).Effect of Minor Cu Addition on the Precipitation Sequence of an As Cast Al-Mg-Si 6005 Alloy.Archives of Metallurgy and Materials,57(2),457-467.
  9. Ninive, P. H.,Strandlie, A.,GulbrandsenDahl, S.,Lefebvre, W.,Marioara, C. D.,Andersen, S. J.,Friis, J.,Holmestad, R.,Løvvik, O. M.(2014).Detailed Atomistic Insight into the β” Phase in Al-Mg-Si Alloys.Acta Materialia,69,126-134.
  10. Takeda, M.,Ohkubo, F.,Shirai, T.,Fukui, K.(1996).Precipitation behaviour of Al-Mg-Si ternary alloys.Materials Science Forum,217-222,815-820.
  11. Zhen, L.,Fei, W. D.,Kang, S. B.,Kim, H. W.(1997).Precipitation behavior of Al-Mg-Si alloys with high silicon content.Journal of Materials Science,32,1895-1902.