题名 |
正交異向平板受熱激振之非線性分析 |
并列篇名 |
Analysis of a Nonlinear Orthotropic Plate Subjected to Thermal Excitation |
DOI |
10.29507/JT.200506.0001 |
作者 |
簡守謙(Shoou-Chian Jen);趙榮輝(Jung-Hui Chao) |
关键词 |
平板 ; 分歧圖 ; 混沌 ; plate ; bifurcation diagram ; chaos |
期刊名称 |
技術學刊 |
卷期/出版年月 |
20卷2期(2005 / 06 / 01) |
页次 |
107 - 114 |
内容语文 |
繁體中文 |
中文摘要 |
本論文探討正交異向平板受熱激振之非線性分析,採用馮卡門平板理論(von Kármán plate theory),獲得非線性偏微方程式;以蓋里奇方法(Galerkin method)運算後,簡化為非線性常微方程式;提出以J積分值為指標,用來建立J積分值的分歧圖表現多解共存及初始空間的吸引子盆地圖。正交異向平板受熱激振有週期倍增至混沌響應及豐富的響應類型出現;配合以Poincarè切面圖、相圖、頻譜圖和Lyapunov指數,說明響應類型。 |
英文摘要 |
In this paper, we study a nonlinear orthotropic plate subjected to thermal excitation. The governing equations are derived from von Kármán plate theory. From them, the simplified nonlinear ordinary differential equations are then obtained by employing Garlerkin's method. We have provided an effective index J integral, which constructs the J bifurcation and basins of attraction to evaluate the influence of parameters and to observe the characteristics of these systems. Chaotic motion and basins of attraction are distinguished by J integral with assistance of Ponincaré section, phase portraits, frequency spectrum, and Lyapunov exponent. |
主题分类 |
工程學 >
工程學綜合 |