题名

AUTOMATIC KEY-FRAMES EXTRACTION OF HUMANOID MOTIONS

作者

Chin-Hung;Ko Jia-Yi Li;Tain-Chi Lu

关键词

character animation ; principal component analysis ; motion saliency ; key-frame extraction

期刊名称

技術學刊

卷期/出版年月

32卷1期(2017 / 03 / 01)

页次

39 - 47

内容语文

英文

中文摘要

3D authoring tools provide a wide variety of motion editing functions to users to make motions appear more plausible and natural. Animators obviously need to spend much time and invest considerable efforts to edit great amounts of frames for the sake of obtaining their desired animation results. Therefore, animators try to reduce their burdens by picking up the appropriate key-frames, editing these chosen key-frames, and interpolating them for their desired results. Even animators with sufficient experience in animation may need to use several number of times to gain the appropriate key-frames. In this paper, we present a method to overcome aforementioned key-frame problem by automatically picking up the most significant keyframes from a continuous motion clip. Users only need to input a target motion clip in Biovision Hierarchy (BVH) format and provide a series of parameters, and the proposed method will extract the most significant keyframes from target motion clips automatically. In order to verify the quality of extracted key-frames, we directly interpolate the extracted key-frames and compare them with the input motion clip. The experimental results suggest that the proposed method is less labor-exhaustive, and it decreases the operation time without sacrificing original motion features.

主题分类 工程學 > 工程學綜合
参考文献
  1. Autodesk Inc. 2015. Accessed April 25. http://www.autodesk.com.tw/products/3ds-max
  2. CMU MoCap database. 2015. Accessed January 31. http://mocap.cs.cmu.edu
  3. Alexa, M.,Müller, W.(2000).Representing Animations by Principal Components.Computer Graphics Forum,19(3),411-418.
  4. Bulut, E.,Capin, T.(2007).Keyframe Extraction from Motion Capture Data by Curve Saliency.Proceedings of 20th Annual Conference on Computer Animation and Social Agents
  5. Casey, J.(1996).Exploring Curvature.Wiesbaden:Vieweg Verlag.
  6. Glardon, P.,Boulic, R.,Thalmann, D.(2004).PCA-based Walking Engine Using Motion Capture Data.Proceedings of Computer Graphics International
  7. Gonzalez, R. C.,Woods, R. E.(2007).Digital Image Processing.Boston:Addison-Wesley.
  8. Halit, C.,Capin, T.(2010).Multiscale Motion Saliency for Keyframe Extraction from Motion Capture Sequences.Computer Animation and Virtual Worlds,22(1),3-14.
  9. Hartigan, J. A.,Wong, M. A.(1979).Algorithm AS 136: A K-means Clustering Algorithm.Journal of the Royal Statistical Society C (Applied Statistics),28(1),100-108.
  10. Huang, P.,Hilton, A.,Starck, J.(2008).Automatic 3D Video Summarization: Key Frame Extraction from Self-Similarity.Proceedings of 3DPVT08-the Fourth International Symposium on 3D Data Processing, Visualization and Transmission
  11. Jin, C.,Fevens, T.,Mudur, S.(2012).Optimized Key-frame Extraction for 3D Character Animations.Computer Animation and Virtual Worlds,23(6),559-568.
  12. Kim, H. H.,Kim, Y. H.(2010).Toward a Conceptual Framework of Key-frame Extraction and Storyboard Display for Video Summarization.Journal of the American Society for Information Science and Technology,61(5),927-939.
  13. Lee, C. H.,Varshney, A.,Jacobs, D. W.(2005).Mesh Saliency.ACM Transactions on Graphics,24(3),659-666.
  14. Lei, S.,Xie, G.,Yan, G.(2014).A Novel Key-frame Extraction Approach for Both Video Summary and Video Index.The Scientific World Journal,2014,695168.
  15. Li, S.,Okuda, M.,Takahashi, S.(2005).Embedded Key-frame Extraction for CG Animation by Frame Decimation.Proceedings of IEEE International Conference on Multimedia and Expo
  16. Lim, I. S.,Thalmann, D.(2002).Construction of Animation Models Out of Captured Data.Proceedings of IEEE Conference on Multimedia and Expo 1
  17. Liu, F.,Zhuang, Y.,Wu, F.,Pan, Y.(2003).3D Motion Retrieval with Motion Index Tree.Computer Vision and Image Understanding,92(2-3),265-284.
  18. Park, M. J.,Shin, S. Y.(2004).Example-based Motion Cloning.Computer Animation and Virtual Worlds,15(3-4),245-257.
  19. Qi, T.,Feng, Y.,Xiao, J.,Zhuang, Y.,Yang, X.,Zhang, J.(2013).A Semantic Feature for Human Motion Retrieval.Computer Animation and Virtual Worlds,24(3-4),399-407.
  20. Ratsamee, P.,Mae, Y.,Jinda-Apiraksa, A.,Machajdik, J.,Ohara, K.,Kojima, M.,Sablatnig, R.,Arai, T.(2013).Lifelogging Keyframe Selection Using Image Quality Measurements and Physiological Excitement Features.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  21. Smith, L. I. 2002. “A Tutorial on Principal Component Analysis.” Accessed April 25. http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
  22. Togawa, H.,Okuda, M.(2005).Position-based Key-frame Selection for Human Motion Animation.Proceedings of IEEE 11th International Conference on Parallel and Distributed Systems 2
  23. Tong, X.,Duan, L.,Xu, C.,Tian, Q.,Lu, H.(2006).Local Motion Analysis and Its Application in Video based Swimming Style Recognition.Proceedings of 18th International Conference on Pattern Recognition (ICPR”06)
  24. Zeppelzauer, M.,Zaharieva, M.,Mitrovic, D.,Breiteneder, C.(2010).A Novel Trajectory Clustering Approach for Motion Segmentation.Proceedings of 16th International Multimedia Modeling Conference
  25. Zhang, Y. Z.,Tao, R.,Zhang, F.(2015).Key Frame Extraction Based on Spatiotemporal Motion Trajectory.Optical Engineering,54(5),050502.