题名

混合式機器學習方法於施工人員個人安全裝備即時辨識之應用

并列篇名

APPLICATION OF THE HYBRID MACHINE LEARNING TECHNIQUES FOR REAL-TIME IDENTIFICATION OF WORKER'S PERSONAL SAFETY PROTECTION EQUIPMENT

作者

余文德(Wen-Der Yu);廖珗洲(Hsien-Chou Liao);蕭文達(Wen-Ta Hsiao);張憲寬(Hsien-Kuan Chang);吳定餘(Ting-Yu Wu);林楨中(Chen-Chung Lin)

关键词

機器學習 ; 影像辨識 ; 施工安全 ; 個人安全裝備 ; AI ; ML ; construction safety ; personal safety equipment

期刊名称

技術學刊

卷期/出版年月

35卷4期(2020 / 12 / 01)

页次

155 - 165

内容语文

繁體中文

中文摘要

營建施工意外一直高居世界各國產業職災之首,究其原因在於營建工地具有高度開放與動態特性,並受限於工地職安人員之質與量,常難以落實風險控管與即時防治。然而,受惠於人工智慧(AI)深度學習技術快速發展,在工地物件之動態視覺辨識功能上得到重大突破,使得營建工地職安管理出現新的發展契機。本研究旨在以人工智慧視覺辨識技術為基礎,發展營建工地施工人員定位與安全裝備辨識之功能,自動發掘工地勞工之潛在安全危害,並降低職安管理人員之工作負擔。本研究建構完成之系統適用於營造現場之勞工安全裝備辨識,並以實際公共工程專案工地進行系統驗證,系統最終訓練結果為召回率95%以上,精確率93%以上,實測之正確率為90%以上,純淨度為80%以上,已達輔助職安人員進行安全管理之實用性,可有效提升營建工地安全效益及降低職災發生之風險。

英文摘要

Construction accidents are the most significant contributor to occupational disasters among all industries worldwide. This is due to both the open and dynamic characteristics of construction sites as well as the insufficient quantity and quality of site safety management personnel. The advancement of Artificial Intelligence (AI) deep learning techniques in dynamically identifying the moving objects on-site offers a promising opportunity to improve construction safety. This paper presents the application of the most state-of-the-art AI techniques to identify on-site construction safety hazards in order to prevent risk events for construction workers. The proposed method has been implemented in a real construction project and achieved satisfactory performance with 95% of Recall, 93% of Precision for lab testing, 90% of Correctness and 80% of Cleanness for in-situ testing. It has been concluded that the proposed method has promising potential to assist construction safety management personnel in improving the safety management practices.

主题分类 工程學 > 工程學綜合
参考文献
  1. Brilakisa, I.,Park, M. W.,Jog, G.(2011).Automated Vision Tracking of Project Related Entities.Advanced Engineering Informatics,25(4),713-724.
  2. Chen, L. C.,Zhu, Y.,Papandreou, G.,Schroff, F.,Adam, H.(2019).Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation.Proceedings of European Conference on Computer Vision, Munich, Germany,New York, NY:
  3. Ding, L.,Fang, W.,Luo, H.,Love, P. E. D.,Ouyang, X.(2018).A Deep Hybrid Learning Model to Detect Unsafe Behavior: Integrating Convolution Neural Networks and Long Short-term Memory.Automation in Construction,86,118-124.
  4. Fang, Q.,Li, H.,Luo, X.,Ding, L.,Lou, H.,Rose, T. M.,An, W.(2018).Detecting Non-hardhat-use by a Deep Learning Method from Far-field Surveillance Videos.Automation in Construction,85,1-9.
  5. Fang, W. L.,Ding, L. Y.,Luo, H. B.,Love, P. E. D.(2018).Falls from Heights: A Computer Vision-based Approach for Safety Harness Detection.Automation in Construction,91,53-61.
  6. Girshick, R.(2015).Fast R-CNN.Proceedings of the 2016 IEEE International Conference on Computer Vision (ICCV 2015), Santiago, Chile,Washington, DC:
  7. Girshick, R.,Donahue, J.,Darrell, T.,Malik, J.(2016).Region-Based Convolutional Networks for Accurate Object Detection and Segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,38(1),142-158.
  8. Gong, J.,Caldas, C. H.(2008).Data Processing for Real-time Construction Site Spatial Modeling.Automation in Construction,17(5),526-535.
  9. Huang, G.,Liu, Z.,Maaten, L. V. D.,Weinberger, K. Q.(2017).Densely Connected Convolutional Networks.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,Washington, DC:
  10. Krizhevsky, A.,Sutskever, I.,Hinton, G. H.(2012).Imagenet Classification with Deep Convolutional Neural Networks.Proceedings of the 25th International Conference on Neural Information Processing Systems
  11. Li, J.,Liu, H. M.,Wang, T. Z.,Jiang, M.,Wang, S.,Li, K.,Zhao, X. G.(2017).Safety Helmet Wearing Detection Based on Image Processing and Machine Learning.Proceedings of the Ninth International Conference on Advanced Computational Intelligence (ICACI 2017), Doha, Qatar,Washington, DC:
  12. Li, K.,Zhao, X. G.,Bian, J.,Tan, M.(2018).Automatic Safety Helmet Wearing Detection.Proeddings of IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI,Washington, DC:
  13. Michie, D.(1993).Turing's Test and Conscious Thought.Artificial Intelligence,60(1),1-22.
  14. Mneymneh, B. E.,Abbas, M.,Khoury, H.(2018).Evaluation of Computer Vision Techniques for Automated Hardhat Detection in Indoor Construction Safety Applications.Frontiers in Engineering Management,5(2),227-239.
  15. Mneymneh, B. E.,Abbas, M.,Khoury, H.(2017).Automated Hardhat Detection for Construction Safety Applications.Procedia Engineering,196,895-902.
  16. Park, M. W.,Brilakis, I.(2012).Construction Worker Detection in Video Frames for Initializing Vision Trackers.Automation in Construction,28,15-25.
  17. Redmon, J.,Divvala, S.,Girshick, R.,Farhadi, A.(2016).You Only Look Once: Unified, Realtime Object Detection.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,Washington, DC:
  18. Redmon, J.,Farhadi, A.(2018).,Cornell University.
  19. Ren, S.,He, K.,Girshick. R.,Sun, J.(2017).Faster RCNN: Towards Real-time Object Detection with Region Proposal Networks.IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6),1137-1149.
  20. Rubaiyat, A. H. M.,Toma, T. T.,Kalantari-Khandani, M.,Rahman, S. A.,Chen, L. W.,Ye, Y. F.,Pan, C. S.(2016).Automatic Detection of Helmet Uses for Construction Safety.Proceedings of the 2016 IEEE / WIC / ACM International Conference on Web Intelligence Workshops, Omaha, NE,Washington, DC:
  21. Russell, S.,Norvig, P.(2010).Artificial Intelligence, A Modern Approach.New York, NY:Prentice Hall.
  22. Szegedy, C.,Toshev, A.,Erhan, D.(2013).Deep Neural Networks for Object Detection.Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS)
  23. Yang, J.,Shi, Z. K.,Wu, Z. Y.(2016).Vision-based Action Recognition of Construction Workers Using Dense Trajectories.Advanced Engineering Informatics,30(3),327-336.
  24. 行政院勞動部職業安全衛生署(2017).105 年勞動檢查年報.勞動部職業安全衛生署.
  25. 林楨中,王鵬堯(2016).資通訊科技運用於勞工作業安全監控技術之研發.新北巿:行政院勞工委員會勞工安全衛生研究所.
  26. 林楨中,余家均(2009)。,新北巿:行政院勞工委員會勞工安全衛生研究所。
  27. 張瑞娜(2012)。新竹,國立交通大學。
  28. 葉宇光(2009)。桃園,國立中央大學。
被引用次数
  1. 蔡宛穎,張憲寬,余文德(2022)。基於電腦視覺技術之防墜落設施安全狀態辨識研究。中國土木水利工程學刊,34(2),109-120。
  2. 廖珗洲,張憲寬,林子怡,余文德,王榮進(2022)。AIoT影像感測器在建築物安全應用與效益研究。建築學報,122,1-20。
  3. (2023)。利用大數據建立營建人員安全管理的風險分類模型。勞動及職業安全衛生研究季刊,31(4),22-33。