题名

三相鼠籠式感應電動機之模式化與最佳化設計

并列篇名

MODELLING AND OPTIMIZATION DESIGN FOR THREE-PHASE SQUIRREL CAGE INDUCTION MOTOR

作者

邱機平(Ji-Pyng Chiou)

关键词

鼠籠式感應電動機 ; 模式化 ; 實測資料 ; 特性分析 ; 混合式CODEQ演算法 ; squirrel cage induction motor ; system modelling ; measurement results ; characteristics analysis ; hybrid CODEQ method

期刊名称

技術學刊

卷期/出版年月

37卷4期(2022 / 12 / 01)

页次

297 - 309

内容语文

繁體中文

中文摘要

本論文的目在於針對3相、4級、220伏特、60赫茲以及5馬力的鼠籠式感應電動機系統進行模式化,並使用已模式化之系統進行感應電動機之特性分析,最後應用混合式CODEQ演算法進行最佳化分析,分析的目標在於希望可以達到體積最小化以及效率最大化,為了讓分析的結果更加符合實際之感應電動機系統,電流、滑差、磁通密度以及功率因數等相關限制條件均納入考慮;在模式化部分,本論文使用東元公司之AEEF系列單鼠籠感應電動機作為模式化之對象,並且依此一感應電動機各個結構之大小、規格以及材料特性建立模式化系統,且與實際量測之資料進行比對,以便確認模式化之正確性;在確認模式化系統之正確性後,再以最佳化演算法針對此一模式化系統進行最佳化分析。為了達到快速且準確分析的目的,本論文使用混合式CODEQ演算法作為分析的工具,因為CODEQ演算法雖然使用雜亂搜尋(chaotic search)、反向學習(opposition-based learning)以及量化機制(quantum mechanics)等運算元克服差分進化法(Differential Evolution, DE)中有關交配因數(crossover factor)、比例參數(scaling factor)以及突變運算元(mutation operator)選擇上的缺點,但大量使用亂數亦會造成CODEQ演算法產生不穩定搜尋情況發生,因此,混合式CODEQ演算法係在CODEQ演算法中加入移居(Migrating)以及加速(Acceleration)兩個運算元以提升演算法的搜尋穩定性,並使用較小的族群個體數達到快速搜尋到解的目的,所以,本論文應用此一具備友善(Friendly)、容易使用(Ease to use)以及強韌(Robust)等特性的混合式CODEQ演算法於三相鼠籠式感應電動機以進行模式化與特性分析。

英文摘要

The modelling of the 3-phase, 4-pole, 220-volt, 60-hz, and 5-hp squirrel cage induction motor is presented in this paper, and the characteristics analysis of the system using hybrid CODEQ method is also discussed. This system has two objectives: minimizing the motor's volume and maximizing the system's efficiency. Various constraints including the current, torque, slip, magnetic flux density, power factor, and so on are considered to realize the induction motor design. The single squirrel cage induction motor of TECO's AEEF series is used in the work. To verify the accuracy of the mathematical model, the induction motor's dimensions, specifications, and materials characteristics are fixed during the simulation process. All simulation results are compared with the measurement results to prove the mathematical model of the squirrel cage induction motor is matched with the practical one. The hybrid CODEQ method is used in this paper to increase the analysis ability. The concepts of chaotic search, opposition-based learning, and quantum mechanics are used in the CODEQ algorithm to overcome the drawback of selection of the crossover factor, scaling factor, and mutation operator used in the differential evolution (DE) method. However, although the wide use of random numbers used in the CODEQ algorithm leads to a higher probability of obtaining a local optimum, much computation time is expended to evaluate the fitness function. So, the acceleration operation and migration operation are used in the CODEQ algorithm (called the hybrid CODEQ algorithm) to increase the search capacity. That is, a smaller population size can be used in the hybrid CODEQ method to achieve the aim of increasing convergence speed. So, the hybrid CODEQ method has friendly, easy to use and robust characteristics and is used to the system modelling and characteristics analysis for the 3-phase squirrel cage induction motor.

主题分类 工程學 > 工程學綜合
参考文献
  1. (2003)。中華民國國家標準(CNS),2003,低壓三相鼠籠型感應電動機(一般用),CNS 2934 C4088,台北市,中華民國國家標準(CNS)。
  2. Chiou, J. P.,Chang, C. F.,Wang, Y. L.(2016).Research for HCODEQ Method.International Journal of Innovation in Management (IJIiM),4(2),77-86.
  3. Choudhary, S.,Bera, T. K.(2020).Elephant Herding Optimization (EHO) Based Parameters Estimation of Induction Machine Considering the Nonlinear Core-Loss Model.annual meeting for the Society of 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE),Kolkata, India:
  4. Dias, C. G.,Silva, L. C. D.,Alves, W. A. L.(2020).A Histogram of Oriented Gradients Approach for Detecting Broken Bars in Squirrel-Cage Induction Motors.IEEE Transactions on Instrumentation and Measurement,69(9),6968-6981.
  5. Du, J.,Li, Y.,Yu, Z.,Wang, Z.(2020).Research on Electromagnetic Vibration Response of Squirrel-Cage Induction Motor Based on Multi-Section Method.annual meeting for the Society of 2020 IEEE International Conference on Applied Supercon-ductivity and Electromagnetic Devices (ASEMD),Tianjin, China:
  6. Gupta, A.,Machavaram, R.,Kshatriya, T.,Ranjan, S.(2020).Multi-Objective Design Optimization of a Three Phase Squirrel Cage Induction Motor for Electric Propulsion System using Genetic Algorithm.annual meeting for the Society of 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC),Nagpur, India:
  7. Khadtare, S. A.,Sai, B. S. V.,Chatterjee, D.(2020).A Model Based Control Strategy for Variable Speed Operation of Three Phase Induction Generator.annual meeting for the Society of 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE),Keonjhar, India:
  8. Leonardo, L. D.,Popescu, M.,Tursini, M.,Parasiliti, F.,Carbonieri, M.(2020).Transient Modeling of Induction Motors Considering Space Harmonics.annual meeting for the Society of 2020 International Conference on Electrical Machines (ICEM),Gothenburg, Sweden:
  9. Liu, C. H.,Chang, H. C.(1985).Computer‐Aided Design and Analysis of Three‐Phase Induction Motors.Journal of the Chinese Institute of Engineers,8(1),31-40.
  10. Liwschitz, M.(1967).電機設計與計算.新北:五洲出版社.
  11. Marfoli, A.,Papini, L.,Bolognesi, P.,Gerada, C.(2020).An Analytical-Numerical Approach to Model and Analyse Squirrel Cage Induction Motors.IEEE Transactions on Energy Conversion,36(1),421-430.
  12. Meira, M.,Bossio, G. R.,Verucchi, C. J.,Ruschetti, C. R.,Bossio, J. M.(2021).Speed Estimation During the Starting Transient of Induction Motors.IEEE Transactions on Instrumentation and Measurement,70
  13. Michalewicz, Z.(1999).Genetic Algorithms + Data Structures .New York, NY:Springer.
  14. Neto, C.,de, O. F.,Barros, L. S.(2020).Maximum Power Point Tracking of Squirrel-Cage Induction Generator-Based Wind Energy Conversion Systems.annual meeting for the Society of 2020 IEEE Power & Energy Society General Meeting (PESGM),Montreal, QC, Canada:
  15. Omran, M. G. H.,Salman, A.(2009).Constrained Optimization Using CODEQ.Chaos, Solitons and Fractals,42(2),662-668.
  16. Orth, D.,Alteheld, C.,Gottkehaskamp, R.(2020).Variance-Based Sensitivity Analysis of Significant Design Parameters of an Induction Machine.annual meeting for the Society of 2020 International Conference on Electrical Machine (ICEM),Gothenburg, Sweden:
  17. Ryu, Y.,Yea, M.,Kim, J.,Han, K. J.(2021).Stator Impedance Modeling Platform for the Electromagnetic Compatibility Aware Design of 3.7- to 7.5-kW Squirrel-Cage Induction Motors.IEEE Transactions on Industrial Electronics,68(11),11255-11265.
  18. Silva, A. M.,Alberto, J.,Antunes, C. H.,Ferreira, F. J. T. E.(2020).A Stochastic Optimization Approach to the Estimation of Squirrel-Cage Induction Motor Equivalent Circuit Parameters.annual meeting for the Society of 2020 International Conference on Electrical Machines (ICEM),Gothenburg, Sweden:
  19. Sun, J.,Feng, B.,Xu, W.(2004).Particle Swarm Optimization with Particles Having Quantum Behavior.annual meeting for the Society of Proceedings of the 2004 Congress on Evolutionary Computation,Portland, OR, USA:
  20. Sun, J.,Xu, W.,Feng, B.(2004).A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization.annual meeting for the Society of 2004 IEEE Conference on Cybernetics and Intelligent Systems,Singapore:
  21. Thomas, R.,Garbuio, L.,Gerbaud, L.,Chazal, H.(2020).Modeling and Design Analysis of the Tesla Model S Induction Motor.annual meeting for the Society of 2020 International Conference on Electrical Machines (ICEM),Gothenburg, Sweden:
  22. Trusova, E. S.,Sitnikov, M. A.,Sepp, Y. I.(2020).Mathematical Modeling of the Short-Circuit Mode of Induction Motor.annual meeting for the Society of 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),St. Petersburg:
  23. Wang, D.,Zhao, J.(2020).Self-Excitation Control of Squirrel-Cage Induction Motor Based on Super-Twisting Sliding Mode Algorithm.the annual meeting for the Society of 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS),Dalian, China:
  24. Wieczorek, J. P.,Gol, O.,Michalewicz, Z.(1998).An Evolutionary Algorithm for the Optimal Design of Induction Motors.IEEE Transactions on Magnetics,34(6),3882-3887.
  25. Xiong, Y.,Zhao, J.,Liu, X.(2020).Selection and Analysis of Slot Number of Stator and Rotor for Small Five Phase Squirrel Cage Induction Motor.annual meeting for the Society of 2020 IEEE International Conference on Power Intelligent Computing and Systems (ICPICS),Shenyang, China:
  26. 吳添保(2014)。三相感應電動機的傳統設計與非傳統設計的比較。馬達電子報,605,1-14。
  27. 陳慧珠,鄭詠仁(2006)。國際馬達能效管理現況與台灣推動措施。機械工業雜誌,367
  28. 傅豐禮(編),唐孝鎬(編)(2007).異步電動機設計手冊.北京:機械工業出版社.
  29. 黃得晉,劉文海(2013)。經濟部技術處產業技術知識服務計畫(ITIS)經濟部技術處產業技術知識服務計畫(ITIS),未出版
  30. 鄒金台,黃傳興,林俊宏,莊逢輝(2007)。我國感應電動機市場發展趨勢與能源效率標準提升研究。96 年節約能源論文專輯,台北: