题名 |
以遺傳演算法優化支援向量迴歸在旅遊需求預測上的應用 |
并列篇名 |
Using Genetic Algorithms to Optimize Support Vector Regression in Tourism Demand Forecasting |
DOI |
10.6130/JORS.2005.18(1)3 |
作者 |
陳寬裕(Kuan-Yu Chen);王正華(Cheng-Hua Wang) |
关键词 |
支援向量機 ; 類神經網路 ; 旅遊需求 ; 敏感度分析 ; 過度擬合 ; Support vector machine ; artificial neural networks ; tourism demand ; sensitivity analysis ; over-fitting |
期刊名称 |
戶外遊憩研究 |
卷期/出版年月 |
18卷1期(2005 / 03 / 01) |
页次 |
47 - 72 |
内容语文 |
繁體中文 |
中文摘要 |
支援向量機(support vector machine,簡稱SVM)的發展最先被運用在模式識別領域,然而隨著ε-不敏感損失函數(ε-insensitive loss function)的導入,支援向量機已經被擴展到解決非線性迴歸估計的問題上,此類技術稱爲支援向量迥歸(support vector regression,簡稱SVR)。本研究將運用支援向量迴歸技術建構旅遊需求之預測模型。研究中將提出一種名爲GA-SVR的新模型,該模型先運用實數值遺傳演算法以找出支援向量迥歸的最佳化參數,並籍這些最佳化參數值建構支援向量迥歸模型,以預測旅遊需求,並將其預測結果和類神經網路模型(artificial neural networks)進行比較,以證明GA-SVR模型確實擁有優良的預測能力。此外爲了驗證參數對支援向量迥歸模型的重要性並獲知支援向量迴歸模型的一些特性,研究中使用了敏感度分析技術(sensitivity analysis),該分析中也證實了,不當的選取參數將使模型容易陷矜過度擬合(over-fitting)或不足擬合(under-fitting)的危機中。 |
英文摘要 |
Support Vector Machine (SVM) was first applied to pattern recognition problem, however, with the introduction of £'-insensitive loss function by Vapnik, SVM has been applied to non-linear regression estimation, a new technique called Support Vector Regression (SVR). This study will apply support vector regression techniques to construct the predictive model of tourism demand. In order to construct an effective SVR model, we had to set SVR's parameters carefully. This study proposes a new model called GA-SVR, that is searching for SVR's optimal parameters through applied real-valued genetic algorithms, and which uses optimal parameters to construct a SVR model. According to the results of the tourism demand forecasting study, and SVR model shows reliability and good prediction. Its generalized performance is even more accurate than artificial neural networks. Moreover, in order to test the importance and understand the features of the SVR model, this study implemented a sensitivity analysis technique. The analysis demonstrates that improperly selected parameters will cause the over-fitting or under-fitting problem in the SVR model. |
主题分类 |
人文學 >
地理及區域研究 社會科學 > 體育學 |
参考文献 |
|
被引用次数 |