题名

應用資訊檢索技術於論文評閱者推薦模式之評估

并列篇名

Evaluation of Information Retrieval Based Models for Recommendation of Paper Reviewers

DOI

10.6120/JoEMLS.200806_45(4).0233.RS.CM

作者

魏世杰(Shih-Chieh Wei);羅欣瑜(Hsin-Yu Luo)

关键词

向量空間模式 ; 論文表示方式 ; 評閱者推薦模式 ; Vector space model ; Paper representation ; Reviewer recommendation

期刊名称

教育資料與圖書館學

卷期/出版年月

45卷4期(2008 / 06 / 01)

页次

409 - 431

内容语文

繁體中文

中文摘要

隨著傳統期刊逐漸採用電子形式出刊,也帶動投稿及評閱過程愈來愈多採用電子自動化之潮流。目前一般的線上投稿暨評閱系統雖然功能逐漸齊備,但仍少有推薦評閱者功能。為評估現有可推薦評閱者技術之表現,本文分別用標題、關鍵詞、摘要、全文4種不同長度的論文表示方式,搭配7種評閱者匹配法,其中包括向量空間模式下的4種相似度匹配法,及應用於OpenConf線上投稿系統中的3種主題式匹配法,交又組合出4×7=28種推薦模式。測試結果顯示,向量空間模式匹配法優於主題式匹配法。又所有推薦模式中,以摘要為論文表示方式,搭配向量空間模式的餘弦相似度匹配法,其推薦效果最好。

英文摘要

As more e-journals appear and the e-review process becomes more popular, the demand for automatic recommendation of a good peer reviewer has been ever increasing. To automate the process of paper reviewer recommendation, this work evaluates four kinds of paper representations, which include full text, abstract, title, and author defined keywords. To match reviewers with papers, this work evaluates seven scoring methods including three topic-based methods from OpenConf, a popular online submission system with source, and four similarity-based methods from the vector space model of traditional information retrieval. The results of the 28 experiments show that recommendation methods based on the vector space model are better than the three topic-based methods of OpenConf in most document representations. Among them, the abstract paper representation combined with cosine similarity matching measure has the highest average precision.

主题分类 人文學 > 圖書資訊學
参考文献
  1. 邱炯友(2003)。學術電子期刊同儕評閱之探析。教育資料與圖書館學,40(3),309-323。
    連結:
  2. 邱炯友、李怡萍(2006)。學術電子期刊編輯整合平台市場與個案:以教育資料與圖書館學季刊為例。教育資料與圖書館學,43(3),327-345。
    連結:
  3. Baeza-Yates, R.,Ribeiro-Neto, B.(1999).Modern information retrieval.New York:Addison Wesley Longman Limited.
  4. Biswas, H. K.,Hasan, M. M.(2007).Using publications and domain knowledge to build research profiles: An application in automatic reviewer assignment.International conference on information and communication technology
  5. Dumais, S. T.,Nielsen, J.(1992).Automating the assignment of submitted manuscripts to reviewers.International ACM SIGIR conference on research and development in information retrieval
  6. Hartvigsen, D.,Wei, J. C.(1999).The conference paper-reviewer assignment problem.Decision Sciences,30(3),865-976.
  7. Hettich, S.,Pazzani, M. J.(2006).Mining for proposal reviewers: Lessons learned at the national science foundation.International conference on knowledge discovery and data mining
  8. Mauro, N. D.,Basile, T. M. A.,Ferilli, S.(2005).GRAPE: An expert assignment component for scientific conference management systems.Lecture Notes in Computer Science,3533,789-798.
  9. Mimno, D.,McCallum, A.(2007).Expertise modeling for matching papers with reviewers.International conference on knowledge discovery and data mining
  10. The OpenConf conference management system
  11. Rigaux, P.(2004).An iterative rating method: Application to web-based conference management.Proceedings of the 2004 ACM symposium on applied computing
  12. Salton, G.,Buckley, C.(1988).Term-weighting approaches in automatic retrieval.Information Processing and Management,24(5),513-523.
  13. Salton, G.,McGill, M. J.(1989).Introduction to modern information retrieval.New York:McGraw-Hill.
  14. Ware, M.(2005).Online submission and peer review systems.Learned Publishing,18,245-250.
  15. 顏玉茵(2004)。碩士論文(碩士論文)。嘉義縣,南華大學出版與文化事業管理研究所。