题名

以主題模型方法為基礎的資訊計量學領域研究主題分析

并列篇名

Analyses of Research Topics in the Field of Informetrics Based on the Method of Topic Modeling

DOI

10.6120/JoEMLS.2014.514/0633.RS.AM

作者

林頌堅(Sung-Chien Lin)

关键词

研究主題分析 ; 資訊計量學 ; 主題模型 ; Analyses of research topics ; Informetrics ; Topic modeling

期刊名称

教育資料與圖書館學

卷期/出版年月

51卷4期(2014 / 09 / 01)

页次

499 - 523

内容语文

繁體中文

中文摘要

本研究利用主題模型方法發現資訊計量學研究主題的結構,探討主題的逐年與發展以及比較相關期刊。本研究利用檢索自Web of Science資料庫的Journal of Informetrics和Scientometrics期刊2007到2013年間的論文資料,做為主題模型方法的輸入,推算主題結構的研究資料。研究結果發現主題數量設定為10的主題模型具有最小的混淆度。雖資料範圍與分析方法不同,本研究產生的主題仍可和由專家分析產生的結果相容。實務的案例研究與書目計量指標的測量方式在各年度都較受重視,且整個領域日趨穩定。兩種核心期刊都廣泛地涉及資訊計量學的所有主題,但Journal of Informetrics特別著重於書目計量指標的建構與應用,而Scientometrics則關注於國家、機構、領域及期刊上的學術生產力評鑑方式與影響因素的探討。

英文摘要

In this study, we used the approach of topic modeling to uncover the possible structure of research topics in the field of Informetrics, to explore the distribution of the topics over years, and to compare the core journals. In order to infer the structure of the topics in the field, the data of the papers published in the Journal of Informetrics and Scientometrics during 2007 to 2013 are retrieved from the database of the Web of Science as input of the approach of topic modeling. The results of this study show that when the number of topics was set to 10, the topic model has the smallest perplexity. Although data scopes and analysis methods are different to previous studies, the generating topics of this study are consistent with those results produced by analyses of experts. Empirical case studies and measurements of bibliometric indicators were concerned important in every year during the whole analytic period, and the field was increasing stability. Both the two core journals broadly paid more attention to all of the topics in the field of Informetrics. The Journal of Informetrics put particular emphasis on construction and applications of bibliometric indicators and Scientometrics focused on the evaluation and the factors of productivity of countries, institutions, domains, and journals.

主题分类 人文學 > 圖書資訊學
参考文献
  1. Bhattacharya, S.,Basu, P. K.(1998).Mapping a research area at the micro level using coword analysis.Scientometrics,43(3),359-372.
  2. Blei, D. M.,Ng, A. Y.,Jordan, M. I.(2003).Latent Dirichlet allocation.The Journal of Machine Learning Research,3,993-1022.
  3. Börner, K.,Chen, C.,Boyack, K. W.(2003).Visualizing knowledge domains.Annual Review of Information Science and Technology,37(1),179-255.
  4. Chen, C.,McCain, K.,White, H.,Lin, X.(2002).Mapping Scientometrics (1981-2001).Proceedings of the American Society for Information Science and Technology,39(1),25-34.
  5. Cobo, M. J.,López-Herrera, A. G.,Herrera-Viedma, E.,Herrera, F.(2011).An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field.Journal of Informetrics,5(1),146-166.
  6. Ding, Y.,Chowdhury, G. G.,Foo, S.(2001).Bibliometric cartography of information retrieval research by using co-word analysis.Information Processing & Management,37(6),817-842.
  7. Dutt, B.,Garg, K. C.,Bali, A.(2003).Scientometrics of the international journal Scientometrics.Scientometrics,56(1),81-93.
  8. Egghe, L.(2012).Five years "Journal of Informetrics".Journal of Informetrics,6(3),422-426.
  9. Glenisson, P.,Glänzel, W.,Janssens, F.,De Moor, B.(2005).Combining full text and bibliometric information in mapping scientific disciplines.Information Processing & Management,41(6),1548-1572.
  10. Griffiths, T. L.,Steyvers, M.(2004).Finding scientific topics.Proceedings of the National Academy of Sciences of the United States of America,101(Suppl. 1),5228-5235.
  11. Grün, B.,Hornik, K.(2011).Topicmodels: An R package for fitting topic models.Journal of Statistical Software,40(13),1-30.
  12. Hofmann, T.(1999).Probabilistic latent semantic analysis.Proceedings of the fifteenth conference on uncertainty in artificial intelligence,San Francisco, CA:
  13. Hood, W. W.,Wilson, C. S.(2001).The literature of bibliometrics, scientometrics, and informetrics.Scientometrics,52(2),291-314.
  14. Leydesdorff, L.(1997).Why words and co-words cannot map the development of the sciences.Journal of the American society for information science,48(5),418-427.
  15. Lu, K.,Wolfram, D.(2012).Measuring author research relatedness: A comparison of word ‐ based, topic ‐ based, and author cocitation approaches.Journal of the American Society for Information Science and Technology,63(10),1973-1986.
  16. Meyer, D.,Hornik, K.,Feinerer, I.(2008).Text mining infrastructure in R.Journal of Statistical Software,25(5),1-54.
  17. Mimno, D.,McCallum, A.(2007).Mining a digital library for influential authors.Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries,New York, NY:
  18. Noyons, E. C. M.,Moed, H. F.,Van Raan, A. F. J.(1999).Integrating research performance analysis and science mapping.Scientometrics,46(3),591-604.
  19. Noyons, E. C. M.,Van Raan, A. F. J.(1998).Advanced mapping of science and technology.Scientometrics,41(1/2),61-67.
  20. Rzeszutek, R.,Androutsos, D.,Kyan, M.(2010).Self-organizing maps for topic trend discovery.Signal Processing Letters, IEEE,17(6),607-610.
  21. Schoepflin, U.,Glänzel, W.(2001).Two decades of "Scientometrics". An interdisciplinary field represented by its leading journal.Scientometrics,50(2),301-312.
  22. Schubert, A.,Maczelka, H.(1993).Cognitive changes in scientometrics during the 1980s, as reflected by the reference patterns of its core journal.Social Studies of Science,23(3),571-581.
  23. Thelwall, M.(2009).Introduction to webometrics: Quantitative web research for the social sciences.San Raphael, CA:Morgan & Claypool.
  24. van den Besselaar, P.,Heimeriks, G.(2006).Mapping research topics using word-reference co-occurrences: A method and an exploratory case study.Scientometrics,68(3),377-393.
  25. Wouters, P.,Leydesdorff, L.(1994).Has Price's dream come true: Is scientometrics a hard science?.Scientometrics,31(2),193-222.
  26. Zheng, B.,McLean, D. C., Jr.,Lu, X.(2006).Identifying biological concepts from a protein-related corpus with a probabilistic topic model.Bmc Bioinformatics,7(58)
被引用次数
  1. 曾繁絹(Fan-Chuan Tseng);白佩宜(Pei-Yi Pai)(2023)。以語料庫分析社群媒體探討地方觀光吸引力-臺南市政府臉書專頁為例。圖書資訊學刊。21(2)。89-118。