题名

A Comparison of Regression Equations for Estimation of Eigenvalues of Random Data Correlation Matrices in Parallel Analysis

并列篇名

平行分析隨機矩陣特徵值迴歸式估計之比較

DOI

10.6129/CJP.2003.4504.02

作者

翁儷禎(Li-Jen Weng);李俊霆(Chun-Ting Lee);吳柏儒(Po-Ju Wu)

关键词

平行分析 ; 迴歸式 ; 特徵值 ; 因素分析 ; 因素數目 ; parallel analysis ; regression equations ; eigenvalues ; factor analysis ; number of factors

期刊名称

中華心理學刊

卷期/出版年月

45卷4期(2003 / 12 / 01)

页次

323 - 335

内容语文

英文

中文摘要

決定因素數目是因素分析中重要步驟。Horn(1965)提出平行分析方法,利用常態隨機資料矩陣的特徵值決定因素數目,多位學者遂分別發展不同迴歸式,以簡化隨機資料矩陣特徵值之估計。以往評估各方法之優劣表現均重在複相關平方的大小,較少注意估計之特徵值與隨機資料矩陣特徵值間的絕對差異,亦乏系統性比較各迴歸式優劣之研究。故本研究即在不同樣本人數與變項數目組合下,利用平均絕對差值與相關,系統性比較四條迴歸式之表現,評估迴歸式估計之特徵值與常態隨機資料矩陣特徵值間的差異。研究結果顯示Longman等人(1989)所提出之迴歸式的表現最好,Keeling(2000)次之,Lautenschlager等人(1989)再次之,Allen與Hubbard(1986)的表現最差。

英文摘要

Determining the number of factors is a critical step in factor analysis. Horn (1965) proposed the method of parallel analysis to use mean eigenvalues of random data correlation matrices for estimation of number of factors. Various regression equations were developed to simplify the estimation of mean eigenvalues of random data correlation matrices. The present research systematically evaluated the performance of four regression equations in estimating the eigenvalues of random data correlation matrices. The results indicated that the regression equation developed by Longman et al. (1989) performed the best, followed closely by Keeling (2000). Lautenschlager et al. (1989) came next, and Allen and Hubbard (1986) had the worst performance.

主题分类 社會科學 > 心理學
参考文献
  1. Allen, S. J., Hubbard, R.(1986).Regression Equations of the Latent Roots of Random Data Correlation Matrices with Unities on the Diagonal.Multivariate Behavioral Research,21
  2. Comrey, A. L., Lee, H. B.(1992).A First Course in Factor Analysis.Hillsdale, NJ:Lawrence Erlbaum Associates.
  3. Gorsuch, R. L.(1997).Exploratory Factor Analysis: Its Role in Item Analysis.Journal of Personality Assessment,68
  4. Horn, J. L.(1965).A Rationale and Test for the Number of Factors in Factor Analysis.Psychometrika,30
  5. Kaufman, J. D., Dunlap, W. P.(2000).Determining the Number of Factors to Retain: A Windows-based FORTRAN-IMSL Program for Parallel Analysis.Behavior Research Methods, Instruments, & Computers,32
  6. Keeling, K. B.(2000).A Regression Equation for Determining the Dimensionality of Data.Multivariate Behavioral Research,35(4)
  7. Lautenschlager, G. J.(1989).A Comparison of Alternatives of Conducting Monte Carlo Analysis for Determining Parallel Analyses Criteria.Multivariate Behavioral Research,24
  8. Lautenschlager, G. J., Lance, C. E., Flaherty, V. L.(1989).Parallel Analysis Criteria: Revised Equations for Estimating the Latent Roots of Random Data Correlation Matrices.Educational and Psychological Measurement,49
  9. Longman, R. S., Cota, A. A., Holden, R. R., Fekken, G. C.(1989).A Regression Equation for the Parallel Analysis Criterion in Principal Components Analysis: Mean and 95th Percentile Eigenvalues.Multivariate Behavioral Research,24
  10. Montanelli, Jr. R. G., Humphreys, L. G.(1976).Latent Roots of Random Data Correlation Matrices with Squared Multiple Correlations on the Diagonal: A Monte Carlo Study.Psychometrika,41(3)
  11. O''Connor, B. P.(2000).SPSS and SAS Programs for Determining the Number of Components Using Parallel Analysis and Velicer's MAP Test.Behavior Research Methods, Instruments, & Computers,32(3)
  12. Wang, C. N.(2001).Taipei, Taiwan,National Taiwan University.
  13. Zwick, W. R., Velicer, W. F.(1986).Comparison of Five Rules for Determining the Number of Components to Retain.Psychological Bulletin,99
  14. 王嘉寧 Wang, Chia-Ning(2001)。國立台灣大學心理學研究所。
  15. 王嘉寧 Wang, Chia-Ning、 翁儷禎 Weng, Li-Jen(2002)。探索性因素分析國內應用之評估:1993至1999 Evaluating the Use of Exploratory Factor Analysis in Taiwan: 1993-1999。中華心理學刊 Chinese Journal of Psychology,44(2)
  16. 翁儷禎 Weng, Li-Jen(1995)。社會調查與分析:社會科學研究方法檢討與前瞻。台北市:中央研究院民族學研究所。
被引用次数
  1. 劉心筠、翁儷禎、李俊霆(2010)。特徵值大於一方法正確決定因素數目之再探。測驗學刊,57(2),181-208。