题名

分析方法與交乘項策略組合對潛在交互作用及二次效果估計之評估

并列篇名

Evaluation of Analysis Methods and Product Strategies on Estimation of Latent Interaction and Quadratic Effects

DOI

10.6129/CJP.2008.5004.07

作者

陳淑萍(Shu-Ping Chen);余麗樺(Li-Fa Yu);鄭中平(Chung-Ping Cheng)

关键词

結構方程模型 ; 潛在交互作用效果 ; 潛在非線性效果 ; latent interaction effect ; latent nonlinear effect ; structural equation modeling

期刊名称

中華心理學刊

卷期/出版年月

50卷4期(2008 / 12 / 01)

页次

447 - 472

内容语文

繁體中文

中文摘要

實徵研究上,非線性關係常為研究者所關切,發展潛在變項間交互作用與二次效果等非線性效果之估計有其重要性。本研究以模擬方式,評估中心化限制式方法、Jaccard與Wan程序、部分限制式方法及未限制式方法等四種利用引進交乘項的方法,搭配單一配對、兩兩配對及所有配對型式不同交乘項策略下,對潛在交互作用模型與潛在二次模型估計之影響。結果顯示,四種方法與交乘項策略對估計影響不大,但部分限制式方法於三種配對組合、未限制式方法於兩兩配對與所有配對組合,在適當解比率與參數估計評估表現皆較其他組合差,以小樣本或外生潛在變項負載量低時尤為明顯。

英文摘要

In conducting empirical research, researchers are often interested in nonlinear relationships. Thus, accurately estimating latent interaction and quadratic effects is of great importance. This research aims to evaluate latent interaction and quadratic effects by means of the Monte Carlo method. Performances of all possible combinations of four product indicator based analysis methods with three product strategies are examined. The four approaches used in this study include the centered constrained approach, Jaccard and Wan's procedure, the partially constrained approach, and the unconstrained approach, while the three product strategies are one pair, matched pairs, and all pairs. The results indicate that different approaches and product strategies have little effect on the estimates, but the partially constrained approach and the unconstrained approach (except for the one-pair strategy) produce fewer fully proper solutions, more bias and greater root mean square error for smaller sample sizes or poor reliability of the indicators.

主题分类 社會科學 > 心理學
参考文献
  1. Algina, J.,Moulder, B. C.(2001).A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3.Structural Equation Modeling,8,40-52.
  2. Arminger, G.,Muthén, B. O.(1998).A Bayesian approach to nonlinear latent variable models using the Gibbs-Sampler and the Metropolis-Hastings algorithm.Psychometrika,63,271-300.
  3. Bauer, D. J.(2005).A semiparametric approach to modeling nonlinear relations among latent variables.Structural Equation Modeling,12,513-535.
  4. Bentler, P. M.,Chou, C. P.(1987).Practical issues in structural modeling.Sociological Methods and Research,16,78-117.
  5. Bollen, K. A.(1989).Structural equations with latent variables.New York:John Wiley & Sons.
  6. Bollen, K. A.,Paxton, P.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
  7. Boomsma, A.,Hoogland, J. J.,R. Cudeck,S. du Toit,D. Sörbom (Eds.)(2001).Structural equation modeling: Present and future.Lincolnwood, IL:Scientific Software International.
  8. Busemeyer, J. R.,Jones, L. E.(1983).Analysis of multiplicative combination rules when the causal variables are measured with error.Psychological Bulletin,93,549-562.
  9. Cortina, J. M.,Chen, G.,Dunlap, W. P.(2001).Testing interaction effects in LISREL: Examination and illustration of available procedures.Organizational Research Methods,4,324-360.
  10. Jaccard, J.,Wan, C. K.(1995).Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches.Psychological Bulletin,117,348-357.
  11. Jöreskog, K. G.,Yang, F.,G. A. Marcoulides,R. E. Schumacker (Eds.)(1996).Advanced structural equation modeling: Issues and techniques.Mahwah, NJ:Lawrence Erlbaum Associates.
  12. Kenny, D. A.,Judd, C. M.(1984).Estimating the nonlinear and interactive effects of latent variables.Psychological Bulletin,96,201-210.
  13. Klein, A. G.,Muthén, B. O.(2007).Quasi maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects.Multivariate Behavioral Research,42,647-674.
  14. Klein, A.,Moosbrugger, H.(2000).Maximum likelihood estimation of latent interaction effects with the LMS method.Psychometrika,65,457-474.
  15. Lee, S. Y.,Song, X. Y.,Poon, W. Y.(2004).Comparison of approaches in estimating interaction and quadratic effects of latent variables.Multivariate Behavioral Research,39,37-67.
  16. Lee, S. Y.,Zhu, H. T.(2000).Statistical analysis of nonlinear structural equation models with continuous and polytomous data.British Journal of Mathematical and Statistical Psychology,53,209-232.
  17. Lee, S. Y.,Zhu, H. T.(2002).Maximum likelihood estimation of nonlinear structural equation models.Psychometrika,67,189-210.
  18. Little, T. D.,Bovaird, J. A.,Widaman, K. F.(2006).On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables.Structural Equation Modeling,13,497-519.
  19. Marsh, H. W.,Wen, Z.,Hau, K. T.(2004).Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction.Psychological Methods,9,275-300.
  20. Marsh, H. W.,Wen, Z.,Hau, K. T.,G. R. Hancock,R. O. Mueller (Eds.)(2006).Structural equation modeling: A second course.Greenwich, CT:Information Age.
  21. Milliken, G. A.,Johnson, D. E.(1989).Analysis of messy data.Belmont, CA:Wadsworth.
  22. Moosbrugger, H.,Schermelleh-Engel, K.,Klein, A.(1997).Methodological problems of estimating latent interaction effects.Methods of Psychological Research Online,2,95-111.
  23. Moulder, B. C.,Algina, J.(2002).Comparison of methods for estimating and testing latent variable interactions.Structural Equation Modeling,9,1-19.
  24. Neale, M. C.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
  25. Ping, R. A.(1996).Latent variable interaction and quadratic effect estimation: A two-step technique using structural equation analysis.Psychological Bulletin,119,166-175.
  26. Ping, R. A.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
  27. Schermelleh-Engel, K.,Klein, A.,Moosbrugger, H.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
  28. Tate, R. L.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
  29. Wall, M. M.,Amemiya, Y.(2001).Generalized appended product indicator procedure for nonlinear structural equation analysis.Journal of Educational and Behavioral Statistics,26,1-29.
  30. Wall, M. M.,Amemiya, Y.(2000).Estimation for polynomial structural equation models.Journal of the American Statistical Association,95,929-940.
  31. Williams, L. J.,Edwards, J. R.,Vandenberg, R. J.(2003).Recent advances in causal modeling methods for organizational and management research.Journal of Management,29,903-936.
  32. Wood, P. K.,Erikson, D. J.,R. E. Schumacker,G. A. Marcoulides (Eds.)(1998).Interaction and nonlinear effects in structural equation modeling.Mahwah, NJ:Lawrence Erlbaum Associates.
被引用次数
  1. 鄭中平、陳淑萍(2016)。潛在三階非線性效果的模型設定:限制式方法。組織與管理,9(1),125-156。